Anthony Eden

From an early age, Anthony developed a love of interaction with math-
amatics and computational languages, along the way gaining an appre-
ciation of any given natural envircnment and the ability to transform
his environment into a digital construct. Inspiration for his latest proj-
ect, www.arseiam.com (essentially an ActionScript anthology of his
Flash work), is testament to this philesophy. The last decade has
included commercial roles with Microsoft, Disney, Toyota, and Adobe,
providing a sound framewark in which to explore and diversify his proj-
ect development, life cycle skills. Spare time? If he's not thinking about
it, he's doing it!

Throughout the course of this chapter, you'll learn the fundamentals of designing and develaping a racing
game engine. You'll alse discover how to implement simple, yet innovating scrolling and scaling technigues
to achieve an arcade-style look and feel, Although the examples in this chapter are based around the
development of a car racing game, among other things we cover some Al path-following techniques that
you can apply te 2 variety of games styles.

oned in the middle of the

The racing game that we develop is a top-view game in which the car is positi
We cover user control cre-

play area and the track moves and scales relative to the car's angle and velocity.
ation, collision detection, and computer-centrolied epponents.

Open the flle race_final.swf and familiarize yourself with the game play, the c@r physics, and the differ-
ent types of objects used to build the track.

Getting Started

Before you start building the game you should establish the structure and detai[‘s Of‘ the FEa_sh ﬁ.le. [f you're
feeling lazy, then you can just open race_structure.fla and skip to the foliowing instructions:

1. Create a new Flash document with the dimensions 550x400, a background of dark gray (#333333
should suffice), and a frame rate of 21.

2. Create five new layers {you need six layers in total) and name
them as, gui, mask, overhead, car, and track from top to bot-

EETEREAEEANEETNED

tom.

Lt

On layer mask, create a square (any fill coler, but without a
line} 350x350 pixels and place it at the coordinates 10,10
Convert layer mask into @ mask and make all layers beneath it
masked.

When you first create the mask, only the layer immediately
beneath the mask turns into a masked layer. To turn the other lay-
ers into masked layers, double-click the layer icon to open the
Layer Properties dialog box, and then choose Masked from the
options. Alternatively, you can drag each layer to the bottom of
the stack of masked layers. A small rectangle appearing below the
icon of the previous masked layer should indicate that dropping
the dragged layer will also make it masked.

Cnce you've completed these steps, your final layer structure
should look like this:

Now that we've covered the file structure, iet’s take a quick look at the steps required to build the game.
We'll take a more detailed look at each of these steps in the subsequent sections of this chapter.
Building the racetrack: Here we'll lock at ways to create and detail the track and its elements.

® Creating the race car: Once the track is built, you'll be ready to put the wheels into motion by
treating a race car and adding some user controls.

B Moving the track: As the car is stationary, you need to use the user controls to move the track
beneath the car. If you do so, the user is able to meve around the track.

@ Handting the vehicle when it leaves the track: Well, there’s no point having a racetrack on
which you can drive off the road and inte buildings unscathed. This section explains how to make
sure the right things happen when the driver does the wrong things.

Scaling the racetrack: To achieve an arcade iook and feel, we estabiish an easy-to-learn method
for scaling the track while keeping the center of scate beneath the vehicle.

B Moving the computer-controlled cars: Al made easy. This section covers a simple, yet effective
path-fellowing technigue.

B Creating the graphical user interface (GUI): Hare we look at adding detail to the user experi-
ence by creating a user interface that gives real-time feedback on laps and velocity.

® Adding audio: Here we look at adding sound to your game. Music tracks, event effects, and ambi-
ent sound can add great depth to the game play.

Adding customization and enhancements: Once you have the game up and running, we discuss
some of the endless possibitities for increasing the game functionality and user experience.

Building the Racetrack

The track is essentially broken down into four main sections:
7. The track: The arez you drive on (or are supposed to).

2. The track edges: The corner burns and grass/dirt areas that siow the car down if you fail to keep it on
the track.

3. Obstacles: Buildings, walls, spectator stands, and trees wilt all cause you to crash the car if you're
unfortunate enough to drive into them,

4. Overhead objects: The tops of bridges and shadows cast by cbstacles in general have no effect on
yaur vehicle and only serve an aesthetic purpose,

Querhend Objects

- Playars Vehlcla
Opponant Vahicles

—— Obstacle: Lake {Crash Cbjoct)
— Obstaclo; Camora Tower {Crash Objoct)

— Track Edgas: Gomer Burn and Sand Trap
—— The Trock

227

@)

SH

MX-2004 GAMES MOST

WANTED

Initially you'll focus on creating the container movie clip that contains (nested within) the track elements
required for collision detection and oppenent vehicles. The container movie clip is structured to optimize
the way in which you manage collision detection and scale the track. Here's an outline cf the movie clip
structure that we describe throughout this section:

@ Container: This mevie clip holds all track layers.

@ Crash zone: This movie clip contains the elements that cause the player’s car to crash.

@ Track: This movie clip contains the track data, opponent vehicles, and the movie clip track inner,

|4

Track/track inner: This movie clip is used by the opponent vehicies to ensure they stay on the
track.

.

The Track

1.

Open the FLA file you created earlier (or refer to the down-
loaded file race_structure.fla). On layer track create a rec-
tangle 1000 pixels wide and 1000 pixels high anywhere on the
stage. Convert it to 2 movie clip named container—this will
be the base of your track, so there’s no need for an outline. it
should be an earthy sclid green.

Edit container and, using the Pengil teol in Smocth pencil
mode, create a dark gray line color with a thickness of 10.
Draw the shape of the racetrack on top of the green base, so
you have a track that looks something like this image:

Next, using Modlify » Shape » Smooth and Modify > Shage
» Optimize, reduce the line to the minimum number of
points possible while retaining the basic shape of your track.

Once you're happy with the shape of your track, convert the
lines to fills {(Madify > Shape » Convert Lines to Fills) and
expand (Modify » Shape > Expand Fill} to a distance of 75
pixels. You've now built your basic track:

IEEE

w

6. This process can be a little tedious and time consum-

ing, but the more effort you put into creating these
elements, the better the track will look. Continue tc
process all corners in this way until the entire track Is

Fiil out the track by adding burns and sand traps at the corners. It's gasiest to draw a line across the
track from the start of the corner to the end of the corner and then adjust the curve of the {ine to cre-
ate the outline of traps and burns. You can then add detail for a more realistic effect. We recommend
that you widen the track on corners to make cornering and overtaking easter:

complete:

7.

8. Make sure to name the instances of each of these
movie clips container, track, and inner, respec-
tively, and place the container movie clip on the
track layer.

Open the file racel.fla to load the track used in this
chapter. :

Now select the area of the track that the cars drive
on and delete it. You're deleting the track because
you're going to use the shape of everything else
for your cellision.detection. Finally, select all your
shapes and convert them into an movie clip
named track inner, and then convert that movie
clip into another and name it track so that you
now have three levels of nested movie clips: con-
tainer/track/inner.

- A
CONTAINER
TRACK

Building the Crash Zone

A crash zone is needed for when the user drives the car off the track and cellides with something that
would normally make the vehicle crash. Stadiums, trees, lakes, and so on are all types of objects that could
cause a nasty crash. The crash zone is also handy in terms of preventing players from cheating and taking
shortcuts through nontrack areas. Open the file race 2.fla to view a sample track with a crash zone
included.

1.

To begin making your crash cone layer, edit the container movie clip. If you haven't already done so,
rename the layer containing the track movie clip to Race Track and create a new layer above called
Crash Zone.

Make a copy of the instance of track and place it at the exactly the same coordinates (Edit » Paste in
Place) on layer Crash Zone. You should now have twe instances of track on two separate layers with
the top instance directly over the top of the bottom instance. If you're starting to get a little lost, just
refer to race_2.fla.

You're now going to use this new instance of track as your guide for creating a crash zone. To start,
name the new instance of the track movie elip crash, and while it’s still selected choose Swap from the
Property inspector. You should have track selected. Now make a duplicate of track {click the Duplicate
Symbol button in the Swap Symbol dialog box), call it crash zone, and select it to replace the current
selected instance. Now edit cxash zone in place, and create a new layer above any layers you may have
in there. On this layer you can start drawing the areas that you want to have as your crash zone.

Start by roughly tracing out the area you want to use {in this case, the areas are indicated in yellow):

3. Once you're happy with the design and ren-
dering of the crash zone, you can delete any
layers that belong to the track, leaving just
your crash zone details:

6.

Check how the crash zone 10oks with the track by viewing the containexr movie clip, which should took
eck how ;
exactly the same as it did two steps ago:

dding Track Overheads ‘ ‘ _
" ' : bably itching to get down and dirty with some ActionSeript by now. Well, I you really w;ntf“tio
ot g o ﬁ'i) t{gon and come back to it later (alternatively, you can just take a .glanc.e at the file
youecgn{ilg;a ;slii ier::ly affects the game’s aesthetics and doesn't invalve any actual functionality, However,
race_3.fla),

paying attention here will make your game look even cocler,

i ject that the cars can drive under
u to add shadows, bridges, and any other obgec : _ :
;r:feeiivlettf:’isl?ﬁe; 3cielroymfir)rl1?iar way to the track layer, except there's no hit detection required (you'li learn

about this shortly).

1.

imeli i ie clip, and paste (Edit » Paste in
in wi our root timeline, copy the container movie ¢ (
T begin W:h' gg tooyf it into your overhead layer. In a similar process to the c_onstruct:on o; théa Tras?
Place) an?t eroti:np);o use previously created movie clips as a guide to creating your og/er e ?ye \
ﬁ?se;ggunfei togbe nested insicde 2 container movie clip in the same way as the track movie clip.

ow that yvou have ar i i t)i i SpeCtO and select SWB.P. Make
ew instance o container, g0 to the P ope |. wa

: d pll a):a [s] {s] tai er, name it container over, a d select it for use. Name this |['|5t_aru:e

a duplicat cor . 7

container_over.

Edit in place container over, select all (Cru/Crmp+A), and convert both selected layers into a movie
clip called overhead inner. Name its instance inner, You've just made a copy of container and pre-

pared it for use in the overhead layer by adding overhead inner as a nested meovie ciip that contains
all the traci/crash details.

Now edit overhead inner and create a new layer above the tayer cantaining your track and crash

movie clips. On this layer, create shadows falling from the buildings and add a little bridge to one of
the straights on your track.

The preceding image illustrates the addi-
tlon of a bridge with shadows as well as
a shadew for the camera tower on the
hairpin turn that we've addee. Once
you're happy with the details, delete the
track and crash movie clips, which
leaves you with only the overhead
details, like this (admittedly, this isn't
such an exciting imagel:

Creating the Race Car

Create a car using your preferred techmques—elther draw something in Flash or impert a bitmap and ma
wally trace the car details (or use the movie clip in the file race_4.f1a). For the best results, make sure
cmmmNemeﬂWdomedmwﬁwwgMmmuwmnmﬂw%kéﬁ&anmwmxm
and is more processor intensive). Make sure that the car is facing downward, convert it inte a movie
(named cax), and alsc name the instance car. Place cax on layer car and align it to the center of the mj

User Controils

Now that you've set up your track, its various components, and the car, you can start to define the way in
which the different objects react to user input and Flash player events.

1. To start, you need to set some basic variables that will be used to control the velocity and rotation of .
the vehicle. You're going to consolidate all of the core code into one central peint to make changes
easier. Place the following script on the first frame of the layer as:

// this is optionzl but the game will be more

// responsive on lower speed processors.

_quality = "low";

// the maximum velocity of the vehicle {pixels per frame}
max_vel = 10,

/7 the maximum velocity of opponent vehicles {pixels per frame)
opponent_max_vel = 10;

// the minimum velocity of the vehicle (pixels per frame)
win_vel =

// the acceleration of the vehicle (pixels per frame per frame)
acceleraticn = 0.4;

// the acceleration of opponent vehicles

/7 (pixels per frame per frame)

opponent_acceleration = 0.4;

/! the deceleration of the vehicle when not acceleratlng
/! {pixels per frame per frame)

deceleration = 0.98;

// the deceleration of the vehicle when braking

7/ (pixels per frame)

brake = -1;

// the acceleration of the vehicle when in reverse

/1 (pixels per frame)

reverse = -0.1;

bk iabayeialaheileduiaps el lnpapeaiedsatage by

/7 the maximum speed of the vehicle when in reverse

// (pixels per frame)

max_xev_vel = -3;

// the amount the car turns (_rotation per frame)

tuzn = 4;

// the amount the opponent car turns (_rotation pex frame)
opponent_turn = 10;

/7 the rate at which the car slows down if it leaves the track
slow = 0.85;

// the rate at which the oppenent car slows down

// when it detects the track

opponent_slow = 0.85;

// the starting lap number

lap = 1;

// the number of laps per race

totaliaps = 5;

// rate at which car is moving

vel = 0;

// a function that starts the race

startRace();

2. Let's tidy all that up a little bit by adding 2 stop{) function and making an init (short for “initialize”
function like so:

stop();

function init() {
_quality = "low";
max_vel = 10;)
opponent_max_vel = 10;
min_vel = 0;
acceleration = 0.4;
opponent_acceleration = 0.4;
deceleration = 0.98;
brake = -1;
reverse = -0.1;
max_rev_vel = -3;
turn = 4;
opponent_turn = 10;
slow = 0.85;
opponent_slow = 0.85;
lap =
totallaps = 5;
vel = @,
startRace();

init();

3. Now that you have an init function, you should create a functior: for the race start and race end. Most
of your action happens during the race and needs to be updated every frame. To do this, you need to
dﬁmwmnmmwmﬁwmynmaHMOﬁMHhmewmmm&Hmﬂmmmmmmwmgmm
to define the onEntexrFrame event handler for the car movie clip. After your init function, write this:

DEDRENCEREER

=

5HMX'2004 GA

4.

5.

function startRace() {
car.onEnterframe = function(){
// code goes here
3
3

And, for the case of ending the race, you need to remove that onEnterFrame event handler:

function endRace(} {
delete car.onEnterFrame;

¥

For the moment you don't need to do anything further with the endRace function, so let’s focus on
startRace. First, you need to capture some keyboard interaction by adding code to the event handlers
for the spacebar and cursor keys:

function startRace() {
car.onEnterfFrame = function{){
if {Key.isDown(39)}{
} else if (Key.isDawn(37)){

1
if {Key.isDown(38}}{
T else if (Key.isDown(40)){

I
if (Key.isDown(32)){
¥

5
}

Note the use of ASCil characters for the right cursor (38}, left cursor (37}, up cursor (38), down cursor
{40), and spacebar (32). You could create a new object and use Key.addListenex, though this method
is somewhat simpler and in most cases at least one of the keys will be used during every frame.

Now you'll give those keypresses some functionality. The right and left cursor keys are used to rotate
the car right and left, respectively. To do this you simply increase the car’s _rotation by the amount
defined by the variable turn;

function startRace() {
cax.onbnterframe = function(){
if (Key.isDown(39)}{
this._rotation $= turn;

¥

if {Key.isDown(37)){
this._rotation -= turxn;

} else if (Key.isDown(38}){

}
if (Key.isDown(40}){
} else if (Key.isDown(32}){

¥
if {Key.isDown(32}){
¥

7. The up cursor key is used to increase the velocity of the car (this is bit of a misnomer as the car is sta-
tionary and turns on the spot—velocity is actually used to define the speed that the track moves
underneath the car and not the movement of the car itself);

function startRace{) {
car.onEnterFrame = function()}{
if {Key.isDown{39)){
this._rotation += turn;
} else if (Key.isDown(37)) {
this._rotation -= turn;

¥
if {Key.isDown(38)){
if (vel < max_vel){
vel += acceleration;

1
} else if {Key.isDown(40}}{
} else {

vel*=deceleration;
}
if (Key.isDown(32)){
}

3
}

In this case, the car accelerates whenever the up arrow key is pressed, and the car decelerates when
the key isn’t pressed. Note that you only allow the car to continue accelerating so long as Jts velocity is
less than the maximum velocity you allowed earlier,

. The reverse functions in a similar manner, but you're making sure that the car’s velocity only changes
if it's greater than the maximum reverse speed:

function startRace() {
car.onEnterfFrame = function{}{
if (Key.isbown(39)}
this._rotation += turn;
} else if (Key.isDown(37)}{
this._rotation -= turn;

}
if (Key.isDown(38)}{
if {vel < max_vel){
vel += aceeleration;

1
} else if (Key.isDown(40}}{
if (vel » max_rev_vel){
vel += reverse;

¥
} else {
vel*=deceleration;

}
if (Key.isDown(32)}{

237

The brake follows the same process as the acceleration and reverse, except you ensure that on the last
itaration of stowing down if the velocity is less than the minimum speed you force it to be equal to the
minimum velocity, Generally, the minimum velocity is 0, and if you allow even the slightest negative
velocity, the car wil continue to roll backward.

2.

function startRace() {
car.onEnterFrame = function{){
if (Key.isDown(39)}{
this._rotation += turn;
} else if (Key.isDown(37)){
this._rotation -= turn;

! :
if (Key.isDown(38)}{
if (vel < max_vel}{

vel += acceleration;

}
} else if (Key.isDown(40)}{
if (vel » max_rev_vel}{
vel += reverse;

1
} else {
vel*=deceleration;

}
if (Key.isDown(32)){
if (velrmin_vel){
vel += brake;
} else {
vel = 0;
}

}
IH
1

Moving the Track

Lat's put things Into moticn now:

1. First of all, you need to make sure that everything is aligned preperly. Ensure thet the center of
container, container over. and the car is aligned to the center of the mask. It's essential that all
these elements be aligned correctly. Refer to the file racesa.fla if you're unsure.

2. Having established the car’s velocity and rotation, you can use a little trigenometry to centrol the way
in which the track actually moves. Fortunately, the trigenometry required in this race engine is fairly
simple, so the following crash course on the basics should cover things nicely.

As the car rotates, you need to calculate the _x and _y components of its trajectory, The following
illustration shows the angles involved when the car is rotated relative to the stage:

If you aren't familiar with the basics of trigonometry, '
then | suggest you check cut some of the excellent
online tutorials. in any case, | like to use the old
trigonometry rule | learned in the early days of
school: SOH CAH TOA (sounds like a2 famous extinct

volcano!).
+ %

SOH: Sine {angle) = opposite / hypotenuse

CAH: Cosine (angle) = adjacent / hypotenuse

TOA: Tan (angle} = opposite / adjacent

in this case, in order to calculate the x component of

velocity (xVel), you have the angle and hypotenuse
{vel), so you need to use this:

Sin{angle) = xVel/vel

or, more usefully, this:
XVel = vel * Sin(angle)

Before you get ahead of yourself, you need te convert the angle {this._rotation, where this refers
to the car movie clip) from degrees to radians (because Flash likes it that way):

xVel = vel * Math.sin(this._rotation * (Math.PI/180))

As xVel is the _x component that you need to move the track (which is located inside of container),
you can remove the use of xVel and use the track position directly. Put this line into the car’s
onEnterFrame handler in the startRace function, right after the key code you entered in the last step:

container.track._x += vel * Math.sin(this._rotation * (Math.PI/180}}

Finally, you use the same process to calculate the _y cemponent (only this time, you use Cosine(angle)
= Opposite / Hypotenuse), and you simplify the code a little by setting a variable (toRadians) equal to
your degreas-to-radians conversion {Math.Pi/180), leaving you with the following:

toRadians = Math.Pi/180;
cantainex.track. x += vel*Math.sin(this. retation * toRadians);
container.track._y -= vel*Math.cos{this._retation * toRadians);

Don't forget that you're using multiple layers of movie clips: txack, crash zone, and container over.
All three need to be moved in the same way as the track; therefore, you add 2 little mere code to
ensure this happens, referencing the clips by their instance names:

toRadians = Math.PI/180;

container.track. x += vel*Math.sin(this._rotation * toRadians};
container.track. y -= vel*Math.cos(this._rotation * toRadians};
container.crash._x = container over.inner. x = container.track. x;
container.crash._y = container_over.inner. y = container.track._ y;

Because you need to mave these layers every frame while the game is playing, you place this code
within the onEnterFrame event handler inside the startRace function. Your code should now look like
this:

function startRace() {
car.onEnterFrame = function() {
/7 user contrals code described in the previcus sectien...

// move
toRadians = Math.PI/180;
container.track. x += vel*Math.sin(this. rotation*toRadians);
container.track. y -= vel*Math.cos(this. rotation*tcRadians);
container.crash._x = container_over.inner._ x=container.track._x;
container.crash._y = container_over.inner._y=container.track. y;
|8
}

You can now test the mavie. You should be able to drive the car around and have the track move relatively
beneath it. If you're having trouble getting this far, refer to the file race_sb.fla. (You might consider mov-
ing the toRadians variable up into your init function. It really needs to be calculated only once, not every
frame, but we've included it here to make this section more understandable.)

Handling the Vehicle When It Leaves the Track

Up until now, you've been able to drive the vehicle in any
direction and over anything—you could take 2 quick spin
over the lake, for instance.

Because you want the car to slow down whenever it leaves
the track, you're going to use a simple hitTest to deter-
mine if the center of the car is over the track. But first let
us remind you of the variable slow that defines how much
the car will slow down:

slow = 0.85;

slow is the multiplication factor that the track has on the
car's velocity. Set it to 0 and the car will come to a dead
stop: set it to 1 and the track has no effect. Keep in mind
that if it's set too low, then the car may not be able to get
back onte the track.

1. Lets see what the hitTest looks like within the
startRace function:

functien startRace() {
car.onEntexframe = function(){
// user controls code
/7 track move code

1ot

// 1s the car off the track?
if (container.hitTest(this. x, this. y, true)) {
vel *= slow;

Here you're detecting if the center of the car {(_x and _y) is aver any of the elements inside of the
track movie clip. Remember earlier when you removed the actual track? Had you not removed it,
the car would always be on top of the track and would never be able to accelerate preperly- Setting the
shapeflag argument to true in the hitTest call. you can test whether the car is over 2ny actual
movie clip inside of container (as opposed to using container’s bounding box).

2. Similarly. you can use your crash clip to see if the car has crashed into anything (and ended the race).
The crash mevie clip hitTest is used in the same way (s2e also race 6.Fla)

functicn startRace() {
car.onEnterFrame = functien(){
// user controls code
/¢ track move code
/¢ is car over the track?
if (container.hitTest(this. x, this._y, true}) {
vel *= slow;
}
// is car over the crash area?
if (container.crash.hitTest(this. x, this._y, true)) {
endRace();
attachMovie(“game_over", “"game_over”, 1);
game_over.onRelease = function{) {
this.xemoveMovieClip();
gotoAndStep(1);
iH
game_over. X = 180;
game_over. y = 200;
i
3

}

Here you're testing o see if the car is over the crash mavie clip and, if so, you exacute the function
endRace, which removes the onEnterFrame event handler used o control the car and track motion. You
also add an onRelease event handler to the movie ciip 50 that if the yser wants to play again, she can sim-
ply click the game over movie clip. There are a number of Ways you can end the game—in this case you're
attaching a movie clip to the main timeline that states the game is over.

241

TERRE

For the game over movie clip, we simply created a rectangle (200x100) with the words Game Over — click
to start again in it and converted it into a movie clip named game over. Next, we set its linkage properties
to Export for ActionScript, Export In first frame, and gave it a linkage Identifier of game_over. Later in the
chapter you'll look at ways of improving the end-of-game experience through the implementaticn of high
scores and play-again functionality.

You now have the basic elements that allow the user to drive a car around a track and to have the off-track
areas slow the vehicle or cause it to crash.

Scaling the Racetrack

As the car moves throughout the course, the track and the car itself scate according to the velocity of the
car, For the track to scale properly, the center of container needs to be aligned to the center of the mask
(where the car should currently be). This ensures that the center of scale is always in the center of the
game screen and underneath the player's can

1. To get the track scaling, you need to add the following code to the onEnterframe defined in the first
frame of layer as:

function startRace() {
car.onEnterFrame = function(){
// user contrels code
/{ txack move code
// is car over the track?
/{ is car over the crash area?

// scale track code
scale_factor = 200-vel*10;
container._yscale = container._xscale = scale_factor;
container_over._yscale = container_over. xscale = scale_factor;
this._yscale = this. xscale = scale factor;
K
}

The first new line of ActionScript here defines the way in which the track and car scale relative to the
velocity of the car, and it’s better represented by this:

scale factor = Maximum Scale - Car Velocity * Scale Factor;

in the case of your script, you have a maximum scale of 200% and a scale factor of 10. When the car is
stationary (vel = 0), the track scales at 200%. When the car is at maximum velocity (vel = 10 as
defined by the variable max_vel), the track scales at 200 - 10*10 ¢r 100%. You can change these val-
ues to suit the amount of track scaling you desire (consider making a variable out of the maximum
scale value as well to make things even easier to update).

The remaining three lines of script scale the track container, the overhead container, and the car to the
amount of scale_factor. Test the movie and experiment with different scale values. The following
image shows the effect of scale on the track, ranging from 200% through 50%:

You may have found that the scaling is a little jerky. To resolve this, you can implement a simple ease
algorithm. Easing is the process by which you set a target, establish how far away the target is, and
then move a percentage toward that target, constantly reducing the distance between your current
pesitien and your target position. Think of a frog trying to jump out of & well--every time it jumps it
covers half of the remaining distance. As it gets closer to the top of the well, its movements become
shorter and it eases toward jumps of infinitely smaller length (and therefore it never actually manages
to escape).

position = position + (target position - current position) * factor;
current position = position;

Qr in the case of the scale_factor (see race_7.fla):

function startRace() {
car.onEnterframe = functicn(}{
// user controls code
/7 track move code
// 1s car over the track?
// 1s car over the crash area?

// scale track code
rate = 0.1;
scale_factor = 200-_root.vel*10;
scaleSmooth = scaleSmooth+(5cale factor-container. yseale)*rate;
centainer._yscale = container._xscale=scaleSmcoth;
container_over. yscsle = container_over._xscale=scalesmooth;
this._yscale = this. xscalesscaleSmooth;
IE
}

OFf course, to get this to work, you need te declare an initial value for scaleSmooth when the game begins
(this s a new concern with coding in Flash MX 2004). So jumnp back up to the inif function and add this line;

scaleSmooth = 0;

Test the movie to see the effect. Experiment with different values of rate to get the desired speed of scale.

Moving the Computer-Controlled Cars

The following method for computer-controlied opponents is surprisingly straightforward. This technigue is
a simple form of artificial intelligence (Al), which
breaks the stigma that all Al involves lots of nasty cede
and high-level mathematics. it also offers a wide scope
for modification and inclusion into all serts of mation
and game development technigues.

imagine that each of the opponent cars has two points
ahead of it: one forward and to the left, and one for-
ward and to the right. if the point on the left hits the
track, then the car turns to the right. If the point to
the right hits the track, then the car turns to the left,
The fellowing illustration shows a car traveling down-
ward, and the red point on the car’s right has hit the
grass area off the track. When this hit is detected, the
car is rotated a negative amount, forcing it to steer
away from the detected grass area.

Fasy enough! It would also be possible to add a third
point directly in front of the car. Then, if the car was
to hit the point directly in front of it, it would turn to
the direction in which it turned last (that Ts, if it last
turned right, then when the forward point hits the

 TETTRETE
RACING ‘CARS

track it will continue to turn right). In other
words, the three points detect the track and
turn the car away to avoid running over it
and thus stay on the track course. Note that
the forward point isn't necessary for curved
tracks because it's mostly used to avoid col-
liding with objects when approaching them
at a perpendicular angle, so we omit it from
this exercise,

1. Make a duplicate of the user’s car and
change its color or design to visually dif-
ferentiate it from the user's car. Call this
duplicate opponent and place a copy of
it inside the track movie clip at a posi-
tian on the track from which you want
the computer-controlled car to start. ’

2. Edit track, select your opponent vehi- T1 POINTZ

cle, and name its instance opponentd.

Edit opponentl and place a small red

circle (about 2 pixels wide) in front of

the car, convert it intc a mevie clip
named point, and name Hs instance
pointi. Make a copy of pointl and name this second instance point2. Open your Info parel and move

pointl to coordinates —20, 40 and mave pointz to coordinates 20, 40.

3. You're now ready to start adding the computer Al code. The car needs to move, so let’s define an
onEnterfFrame event handier. Add the following script to your startRace function after the car's
onEnterFrame handler (alternatively, check cut our version in race_8.fla)y:

container.txack-opponentl.vel = 0;
container,tzack.opponenti.onEnterFrame = function() {
if (this.vel <= opponent_max_vel) {
this.vel += opponent_acceleration;
}
b

Take note that you're defining the onEnterFrame handler for the oppornentz vehicle, so on each frame the
variable vel (which you initialize at 0) will increase at a rate of opponent_acceleratien until it reaches a
maximum value, in this case opponent_max_vel (that is, the car accelerates to its top speed). =

4. Now to put this acceleration to use, you need to add a few mare lines of ActionScript;

container.track.opponenti.onEntexFrame = function() {
var rot = this._rotation; -
if (this.vel <= cpponent_max_vel) {
this.vel += opponent_acceleration;

this. x -= Math.sin(rot*toRadians)*this.vel;
this._y += Math.cos(rot*toRadians)*this.vel;

)

245

Pk bos beskos Lo g ool
SHMX 2004 GAMES 'MOST WANTED

You're now establishing a variable rot and making it equal to the _rotatien of your opponeant vehicle.
Using a combination of this rotational value and velocity you can then use seme trigonometry simitar
to what you used earlier when moving the track:

this._x -= Math.sin{rot*toRadians)*this.vel;
this._y += Math.cos{rot*toRadians)*this.vel;

Notice how you now subtract the _x component and add the _y component, whereas with the track
you did the opposite? Previously, you were moving the track in the opposite directicn of the car. New
you're moving the car itself, thus the _x and _y component values need to change accordingly.

Test the movie and the car should drive down the bottom of your screen. Try rotating opponent1 and
then testing the movie. Your car should now drive off in whatever direction it is pointing.

5. Back to those two points you created in oppenent1 earlier. Place the following code after the previous
chunk:

conteiner.track.opponenti.pointi.onEnterFrame = function() {

var myPoint = new Object();

myPoint.x = this._x;

myPoint.y = this._y;

this._parent.localToGlobal(myPoint);

if {this._parent._parent.inner.hitTest{myPoint.x, myPoint.y, true)) {
this._parent._rotation -= opponent_turn;
this._parent.vel *= opponent_slow;

}
5

Here you're using new Object to convert the _x and _y coordinates of pointt from lecal space (rela-
tive to its parent movie clip) to global space {relative to the stage). This code makes good use cf the
localToGlobal() cocrdinate-conversion methed by testing to see if myPoint is over inner (your track)
and, if so, it makes the car rotate away from it. The car is also partially slowed down (_parent.vel is
decreased propertionally) to simulate the vehicle slowing down for corners.

6. The next batch of script is required for point2 and is exactly the same, with the exception of the direc-
tion in which the car is rotated:

container.track.opponentl.point2.onEntexframe = function() {
var myPoint = new Object();
myPoint.x = this._x;
myPoint.y = this._y;
this._parent.localToGlobal{myPoint);
if (this._parent._parent.inner.hitTest(myPoint.x, myPoint.y, tzue)} {
this._parent._rotation += opponent_tuxn;
this._parent.vel *= opponent_slow;
}
¥

By testing the movie, you should now see the car driving along the track, avoiding the edges and slow-
ing for corners. If your car has a tendency to drive off the track or zigzag along it, then experiment with
the _root.opponent_turn value or the distance in which pointt and point2 lay relative to the car.
Generally, the farther away the poirits are from the car along the x axis, the more the car will zigzag,
end the closer the points are to the car on the y axis, the less likely it is that the car will turn in time to
avoid running off the track. Alsc be aware that the car's capability to stick to the track wilt be affected
by its maximum velocity and rate cf turn. Should you continue to have trouble, please refer to the file
race_8a.fla.

Note that because the previous two onfnterFrame handlers refer to almost identical functions, you
may want to consolidate your code by making a single function that both points may reference. For
fnstance, you could replace the two previous sections of code with the foliowing lines:

function checkTurn() {

var myPoint = new Object{);

myPoint.x = this. x;

myPoint.y = this._y;

this._parent.localToGlohal(myPoint);

if (this._parent._ parent.inner.hitTest(myPoint.x, myPoint.y, true}) {
this. parent._rotation += (opponent_turn*this.direction);
this._parent.vel *= oppanent_slow;

}
Y
cantainer.track.opponentl.pointl.direction = -1;
container.txack.opponenti.pointz.direction = 1;
containez.track.opponentl.pointl.onEnterframe = checkTurn;
container.track.opponenti.point2.onEnterFrame = checkTurn;

Generally, it's a good idea to abstract functionality, when you can, to keep your code more modular
and easier to debug.

7. Finally, a little bit of housekeeping. When the game ends, you should turn off the event handlers used
to control the opponent vehicle, so add the following script to your endRace function:

function endRace() {
delete car.onEnterFrame;
delete container.track.opponenti.pointz.onEnterFrame;
delete container.track.opponenti.pointi.onEnterFrame;
delete. container.track.opponenti.onEnterFrame;

Creating the GUI

Ultimately, it's up to yolt a3 to how you'd like tc lay out the different GU! ftems. The following is the layout
that we've chosen for this demonstration:

Before we demonstrate the addition of the game play elements that are tracked through the user inter-
face, you'll need to add some further functionality to the game engine itself.

Spiash Screen

You need to make room for the splash screen on the
main timeline, so move all frame 1 layers to frame 2.
Place a stop() function in the first frame on the as layer,
On frame 1 of the pgui layer, place any designs and
instructions that you require for your game.

The only element that you need is a button to start the
race. it requires that you place the following code on
frame 1 of the as layer (refer to race_final.fla):

start_btn.onRelease = function(} {
play();

I

stop();

Laps

To calculate laps, you need to determine whether the start-
ing line has been crossed and, if so, whether the player
managed to go all the way around the course (rather than
starting and then reversing back cver the lap line). To do
this, you need to add two new movie clips to the overhead
layer (you add them here because you don't want them to
be treated as track components).

1. On the main timeline, edit the container_cver movie
clip in place and then edit overheads_inner in place.
Cn the place where you want your cars to start the
race, create a small rectangle that crosses the track
and Is approximately 10 pixels tall (don't worry about
its coler—you're going tc make it invisible):

2. Turn your rectangle into a movie clip named lapstart,
name its Instance lapstart, and place a second
instance of it across the course approximately hatfway
down the track (and name its instance laphalf);

Bost Lap SO |
Last @p a__.
Lap [:ga

[E5)

. You've now created locations for your starting line and halfway point. Se, in your startRace function,
add the following code, which defines onEnterFrame for the starting line:

245

/f finish line
containex_over.inner.lapstart.onEnterFrame = function() {
if {this.hitTest(car. x, car._y)} {
if (halfway) {
gui_lastlap = (getTimer{)-startTime)/1000 +
if (gui_lastlap < gui_bestlap) {
gui_bestlap = gui_ lastlap;

S";

if (lap == totallaps) {
endRace();
attachMovie("congratulations”, "congrats”, 100);
congrats.onRelease = function() {
this.removeMovieClip();
gotehndStop{1);

E)
congrats. x = 180;
congrats._y = 200;
delete car.onEntexFrame;

} else {
staxtTime = getTimer();
Lapat;
halfway = false;

i

}
¥
I

Let’s take @ moment to break this code dowr and ensure that it's perfectly clear. First, you determine
if the player’s car has hit the lap movie clip: .

if (this.hitTest{car. x, car._y)) {
You then determine if the player has made it to the halfway mark (more on that in a moment):
if (halfway) {

So the player has made it to the halfway mark and back to the start again {that is, the player has fin-
ished a lap). Using the getTimer() function, you can determine how long it has taken the player to
complete the lap, and using an if statement, you can determine if it was the player’s fastest lap (we
cover the use of the startTime varizble shortly):

gui_lastlap = (getTimer()-startTime)/1000 + " s";
if {gui lastlap < gui bestlap) {
gul bestlap = gui_lastlap;

Now you test to see if the cutrent {ap is equal to the total number of laps (that is, is this lap the last one?):

if (lap == totallaps) {

If this is the last lap, you exacute the endRace function, display the race congratulations movie clip, and
position it accordingly:

w

if (lap ==totallaps) {

endRace{};

attachMovie("congratulations”, "congrats", 100);

congrats.onRelease = function() {
this.removeMovieClip();
gotoAndStop(1);

congrats._x = 180;

congrats._y = 200;

delete car.onEnterFrame;

}

For the congratulations movie clip, create a rectangle (200x100) with the words You've finished the
race in it, convert it into a movie clip named congratulations, and set its linkage properties to Export
for ActionScript, Export in first frame, and its linkage ID to congratulaticns.

If this isn’t the last lap, you increment the lap count and switch the halfway fap flag off:

} else {
startTime = getTimer();
lap++;
halfway = false;

¥

Naotice that you alse set (or in the case of lap 2 and onward, reset) the variable you're using to deter-
mine the starting time of the lap:

startTime = getTimer();

Of course, in Flash MX 2064. you need to initialize startTime so that when you evaluate it at the first
lap, the mathematical operation deesn't return NaN {an undefined variable in previous versions of Flash
defaulted to 0, but in Flash MX 2004 it defaults to undefined). Add the following line to your init
function:

startTime = getTimer();

For your second movie clip, laphalf (the one placed halfway around the track). you need to add the
following code:

/7 halfway line
contairer_over.inner.laphalf.onEnterFrame = function(} {
if (this.hitTest(car._x, car._y)) {
halfway = true;

1

This one is much simpler in that you determine if the car has hit the halfway movie clip. If so, you set
the halfway flag to true.

You can now set the _alpha for both movie clips to 0 {via the Color options in the Property inspactor’s
color list menu), thus making them invisible to the user but still available for lap counting, You're now

251

11 'MX 2004 GAME

OST'WANTED

successfully counting laps (so that there are ne cheaters!) and triggering a congratulations event when
the finish line is reached.

7. Once again, you need to finish by turning off your handlers used for lap counting at the end, sc add
the following lines of script to the endRace function:

function endRace() {
delete car.onEnterFrame;
delete container.track.opponentdi.point2.onEnterframe;
delete container.track.opponenti.pointi.onEnterFrame;
delete container.track.opponentl.onEnterframe;
delete container_over.inner.lapstart.onEnterFrame;
delete container_over.inner.laphalf.onEntexFrame;

Displaying Variables

Displaying game variables is a simple process and adds greatly to the overall game experience. You can dis-
play variables such as current lap (lap), total laps {totallaps}, last lap (gui_lastlap), and best lap
(gui_bestlap) by placing dynamic text fields onto the stage and in their var field by placing the name (or
path) of the variable you want te display. ’

1. In the case of adding the car's speed to the GUI, place the following code in the onEnterFrame portion
of the startRace function:

// gui calculations
gui_vel = vel*20;
gui_needle. rotation = gui_vel*1.3;

This code calculates the display velocity and rotates a needle on a tachometer. The multiplication fac-
tor is up to you—it relates to how fast you think the cars are going in terms of a real-world value.

To display these values, design a tachﬁmeter that tooks
something like this:

13

2

Turn the needle into a maovie clip and name its instance
gui_needle. Adjust it so that the needle’s center of rota-
tion is centered to tha movie clip. Somewhere on the
tachometer (in this case, above the KPH label), place a
dynamic text field and name its instance gui_vel. Test the
game and adjust the gui_vel and gui_needle._rotation
muitiplication factors to your satisfaction.

You can find all of these GU! additions in the file race_final.fla.

Adding Audio

Music tracks and event effects add great depth to the game
play, as does ambient sound. There are sc many options to
consider that it's not possible to cover them all in this chapter. Therefore we focus on 2 method to add
audio dynamically from your Library, as well as a nice [ittle trick that allows you to alter the pitch of a
sound,

So~und I; best controlled through the sound object as opposed to attaching sounds to frames. You can do
this by_lmportirjg a _sound and giving it a linkage rame—preparing sound assets is very much the same as
preparing mavie clip assets. Once you've prepared your sound, you attach and play it by creating an
instance of the scund object, attaching 2 sound to it, and teliing it to play, just like this:

mySound = new Scund{);
mySound. attachSound("mySoundasset");
mySeund.start();

In the context of this game, you can create multiple instances of the sound object (with names such as
mySound, mySoundz, carSound, and se on) by placing the first two lines of script in the init function. You

then trigger them by placing them throughout the rest of the ActionScript. For example, you could make
the sound of the car crashing like this:

crashSound = new Sound();
crashSound. attachSound("crash");

And then you could trigger this sound, for example, as part of the relevant crash script:

if (container.crash.hitTest{this._x, this. y, true)) {

endRace{);

attachMovie("game_over”, "game_over", 1);

game_over.onRelease = function() {
removeMovieClip{this);
gotoAndStop(1);

game_over._x = 180;

game_over._y = 200;

crashSound.start();

}

Sa far we've been looking at sound at a high level. For more details on using sound in games, see the “Sound
for Games” chapter. Let's move on to 2 neat little trick that demonstrates how you can use the sound object.
For this example, we created the sound of an engine revving increasingly faster. If you can't source or create
a similar sound, then just use the audic samples supplied within race_final.fla.

1. Onge you have your audio file imported into your Library, edit its linkage preperties, select Export for
ActlonSchpt, and make engine its identifier. Make an instance of the sound object by placing the fol-
lowing script inside the init function of your racing car game: '

engineSnd = new Sound()};
engineSnd.attachSound(engine”);

2. You're now going to add a function that plays the audic but does it in a way that is probably very differ-

ent from how you've thought about the sound objact so far. Place this function at the end of your code:

function engine() {
var enginePercent = vel/max_vel;
engineSnd.step();
engineSnd.start((engineSnd.duration)*enginePercent/1300);

}

enginelnt = setIntexval(engine, 100);

RACING CARS

253

~

e

This function combined with setInterval makes the audio file play from different spots (depending
on the car’s velocity) in intervals of a hundredth of a second. The result is the sound of an engine that
changes pitch relative to the car’s speed and its change in speed. Let’s walk through it and have a look
at what's going on:

var enginePercent = vel/max_vel;

This line determines the current velocity as a fraction of the maximum velocity (resulting in a number
between 0 and 1),

engineSnd.stop();
This line is fairly obvious—it makes the engine sound stop.
engineSnd.start({{engineSnd.duxation)*enginePercent/1300) ;

This line makes the sound play again, only this time from a different starting point. At first you discov-
ered the percentage of maximum velocity that the car was traveling out: now you want to play the
sound at that percentage value. You determine this starting peint by multiplying the duration of the
sound {which is in milliseconds) by the percentage. Your starting point needs to be in seconds, so you
should divide by 1,000. But you don't want the audio to start right at the end (because there would be
nothing left to play), so you divide by a number greater than 1,000 (in this case, 1,300, Although there’s
a mathematical rule of thumb here, we suggest trial and error, as slight changes can have significant
effects on the sound of the engine at maximum velecity),

enginelnt = setInterval{engine, 100);

Finally, you use setInterval to run the functien independent of the timeline. In this case, you're play-
ing (well, replaying) the audio file every hundredth of a second. You can change this value to get dif-
ferent results, You set the interval I to enginInt, which allows you to clear the interval when the
game is completed.

When the game Is finished {whether through completion of the laps or by running into an obstacle),
you need to stop the engine roar by stopping the sound. You do this by simply adding two lines to your
endRace function:

function endRace{) {
delete car.onEnterframe;
delete container.track.opponenti.peint2.onEntexFrame;
delete container.track.oppenentl.pointl.onEntexFrame;

delete container.track.opponenti.onEnterfFrame;
delete container_over.inner.lapstart.onEnterFrame;
delete container_over.inner.laphalf.onEnterfFrame;
clearInterval{enginelnt);
stopAllSounds{);

}

These lines stop the interval from running and stop all sounds currently playing in the movie. If you had
more sounds playing in the game (such as music), you might want to simply stop the engine with
engineSnd.stop(), but this method works fine for the current game.

Adding Customization and Enhancements

So far we've discussed the development of a basic car racing game and we've covered the fundamental
aspects. You can expand thase and create your own game-play enhancements and customized functionat-
ity. Here are a few suggestions and samples to get you started on building the best darn racing game ever
made in Flash,

Power-Ups, Bonuses, and Special Hems

Previously we discussed the creation of track and crash layers. Try adding a third layer just for power-ups.
Whenever the user drives over a power-up, the user’s maximum velocity is temporarily (or permanently)
increased. Using the same detection methods, you could allew the computer-contrelled cars to also gain
power-ups, mzking the game a struggle to reach the special items before the opponents.

Different Race Surfaces

Sa far, you have a slowdown area and a collision area in the game, but you can also add many other areas,
such as a speed-up area (cil slicks), an area with an increased rotation angle (ice}, and so on, simulating
other racing surfaces.

Adding Sound Effects

You can easily add sound effects to the movie and to specific events that occur during the race—we've
included a skidding sound clip {skid.wav) in race_final.fla fer you to play arcund with. You can also try
adding a background soundtrack and sound effects to the key events to add greater depth to the game play.

Track Selection

Instead of sticking to the same track, why not create multiple tracks and display them by changing the con-
tents of the track and overheads movie clips?

Adding Animation

In this current game version, you start the race as socn as you go tc frame 2. By adding a starting lights
animation that ptays through and then calls startRace, you can offset the time before the player starts the
actual race. Keep in mind that unless you add a race-started flag for the opponent vehicles, they'll start
before you get the chance to. Why not animate the scenery, such as the water and tree, or better yet, add
some parallax effects with clouds, birds, and airships that scroll at 2 quicker speed compared to the track
in order to add a greater feeling of depth?

255

\SH'MX 2002 GAMES MOST WANTED

Collision Detection

The clip that represents the set of collision areas can be dynamic; you can include obstacles (such as ran-
domly rolling barrels, animals, or broken-down race cars). The opponent vehicle is alse part of the collision
area, but because collision Is detected based on a single point, you could add more advanced collision detec-
tion such as rectangle or even circular collision.

Finish Line
Using a similar technigue to the lap counter mechanism, you can count laps for the opponent cars as well.
By implementing this, you can determine the final finishing order for the play and computer-controlled cars.

Damage

Whenever the car leaves the track and collides with something on the crash tayer, the car is destroyed and
the game is over. Alternatively, i the car leaves the track but deesn't crash, it s, instead, slowed down. You
could add a variable that increments whenever the car hits the track laver so that when it hits a certain
amount, the car is destroyed and you play the crash sequence.

Difficuley

You can achieve different difficulty levels by adding additional cpponent cars, increasing the cars' acceler-
ation and velocity, adding power-ups and power-downs, and increasing the player's damage sensitivity.
Increase the difficulty progressively by adding tracks and obstacles that become increasingly tricky, or
change the functicnality so that the game is fime-trial based and the tracks have tc be completed in a pro-
gressively decreasing ameunt of time.

Bultiuser

Through the use of XML socket technology, or indeed the Flash Communication Server, you're‘able to
re-create the game engine, which allows multiple users to access and play on the same track.

Summary

We explored many different technigues in this chapter that cover a wide range of different purposes. We
looked at

Drawing techniques in the Flash authoring environment

Using keyboard input with ActionScript

Using basic trigonometry

Moving and scaling movie clips
Detecting collisions
Implementing path-following Al
Creating 2 user interface

Adding events sound and manipulating sound dynamically

By breaking down these techniques into modules and applying them systematically, you can now see how
you can use some simple ActionScript to great effect, This knowledge, combined with what you've learned
in the other chapters of this beok, will allow you to create high-guality, engaging games.

The most important thing to remember is now that you've learned the basics of racing game development,
you're ready to add your own creativity and personal flair to the creation of bigger and better games.

For further information and more code samples, please refer to www.arseiam. com.

RACING CAR

