Kejth Peters

Keith lives in the vicinity of Boston with his wife, Kazumi, and their new
daughiter, Kristine. He has been working with Elash since 1999, and he
has coauthored many becks for friends of ED, including Flash X
Studio, Flash MX Most Wanted; Effects & Movies, and the groundbreak-
ing Fiash Math Creativity.

In 2001 Keith started the experimental Flash site BIT-101
(www . bit-101.com}, which strives for a new cutting-edge open source
experiment each day. The site racently won an award at the
Flashforward 2003 Fiash Film Festival in the Experimental category. In
addition to the experiments on the BII-101 site are several highly
regarded Flash tutorials, which have been translated into marny lan-
guages and are now posted on web sites throughout the world.

Keith is currently working full-time doing freelance and contract Flash
development and various writing projects.

H MX 2004 GAMES MOST WANTED

The purpose of this chapter is to introduce the concepts of friction and collisiqn detection. By t!.ﬂe end of
this chapter, you should be able to get your head around the sorts of techniques needed to mtrpduce
these physical concepts to a game. Once you've grasped them, you'll find your games becoming solid and
tangible—not just a bunch of dancing pixels on a screen!

Here’s what to expect. Friction (or the amount you'll have to slow down an object as it rubs. against a sur-
face) is pretty simple. However, collision detection covers scme pretty vast ground. There is one deﬁmt_e
Most Wanted answer about collisions; When two round objects moving at cilfferen.t speeds am:j ang’les’h:t
each other, how do you determine their resulting speeds and directions? Th(a: physics myqived in this SL‘tU-
ation has been discussed so much that the subject has even gotten its own nickname: billiard ball physics.

The Color of Money .
Wwell, because we'll be discussing billiard ball physics, we figured what better game o demoqstrate it than
billiards itself? So, that’s the kind of game yout make in this chapter. As a teaser of 'ghe kind of ﬁ{nda_-
mental collsion-detection techniques that you'll learn, take a look at the file pool _final.swf, which is
available in the source code bundle associated with this chapter (you can download the files from
www. friendsofed. com}.

Before we begin, it's worth making a comment about programming styles. With F!ash WX 2004, you have
many possile methods of writing your code. You could go for a totally object-oriented approach or you
could make each piece of the game into a Flash MX component; and you could use older Flash 5

9

onClipEvent code, the Flash MX event model, or even the new ActionScript 2.0 available with the latest
version. Yourll use the event methods provided in ActionScript 1.0, because of their power and flexibility,
but at this point we won't delve too far inte object-oriented programming (OOP) or components, as these
can be entire subjects to learn in and of themselves. Once you understand what you're doing and why, you
can easlly transfer the principles into the coding methad of your choice.

ool Game Basics

Check out this chapter’s source files, which are avaitable for download from www. friendsofed. com, QOpen

the file pool 01.fla and you'll see the basic setup. Here's a step-by-step breakdown of how to create
this game.

1. Create a new movie. Click though Modify > Document, make the stage 900x600 pixels, and set the
frame rate to 60 fps.

important 1o boost the framie rate:-for.a. game like this, This will allow the '
-balls to travel-a lesser distance on"each frame, allowing for more accurate

-collisior: detection..f the frame rate.is too low, and g ball is moving tog fast,”
".a ball could jump Hght “through”.ancthér ball without ever afficially collid-

it

Z. Let’s not dawdle around: create six new
layers. The following screenshet should
give you an indication as to where we're
taking this,

Lot]

Create some nice graphics for that
billiard-room feel. We created 2z tiled
floer and pool table, as well as a beauti-
fully shaded cue ball. The important
thing here is to create the table and ball
as separate mavie clips, because you're .
going to rely on their dimensions for some of your math.
Essentially, press Crai+F8 to create a new symbol and draw a
green rectangle for your table. Call the movie instance table.
Create another clip and call it whiteBall. Draw a ball on there
and use the rulers to make it 20 pixels in diameter—it will
become important later.

' i’RICTlON AND COLLISION DETECTION

if (this._x>RIGHT) {
this._x = RIGHT;
this.vx *= BOUNCE;

} else if (this. x<LEFT) {
this. x = LEFT;
this.vx *= BOUNCE;

ur own taste, but if you copy us you'lt fill your gix layers with a tiled floor, a
i it s Updtos of the table. Each of these is drawn directly onto its own layer.
The rest 9 e @ g2
shadow, 27

if (this._y>BOTTOM) {
this._y = BOTTOM;
this.vy *= BOUNCE;

} else if (this. y<TOP) {
this._y = TOP;
this.vy *= BOUNCE;

3

}

The top four lines define 2 few constants. These are values that will never change throughout the
course of the program.

You'll note we've used afl CAPITALS os variable names for these.constants.

This Is to signal that these are the final values and shouldn’t be changed
again. i C - o

LEFT, RIGHT, TOP, and BOTTOM are determined from the dimensions of the movie clip table_mc. By tak-
ing the position of the clip and its size, you can find the location of its left, right, top, and bottom
edges by adding or subtracting half its width and height. You then offset these values by 10
{BALL_RARTUS), which is half the diameter of the bail. This gives you the limits of stage positions where

the ball can go. BOUNCE is simply set to 1. This will be used to reverse the speed of the ball when it hits
one of these edges.

+ busy coding. It;s important to get a good understanding of what you're doing
08¢ be adding 2 lot more throughout the chapter.
4. O
at this 5 203
TER = £ .
TS a L DIAMETER/2;
BML’:;AD 5 ° BAL-Eable_mc._heightfz-i-BALL_RADIUS;
Ll table_m";n{ +table_mc._height/2-BALL RADIUS;
0P bl e me._width/24BALL_RADIUS;

i ® .
3220[tablg‘m;{xmabie mc._width/2-BALL_RADIUS;
L ‘— t3b e— . —

eto & .
(nowit® gf e game. a5 you'l
N &

Z. Yol then give whiteBall mc a random velocity in both the x and y axes. Math.random(} returns a value
between 0 and 1. Multiply that value by 5 and add 2, and you get a value between 2 and 7. You use vx
and vy to hold these values. Next. the function ballMove is assigned as the onEnterFrame handler of
whiteBall_mc, which causes that function to run 60 fimes per second, or at least it attempts to. The
actual frame rate will vary depending on the physical capabitities of the system the maovie is being run
on. In that function, you simply add the ball's x and y velocity to its _xand _y pesitions,

RIG -4 * . .

BOUNCE : E'VK : Math.random{)*s-ﬂ: . You then venture into your first math-based collision detection. Ball-to-wall collision detection is pretty
hiteﬁﬂll' vy = Math.random()*5+2;3

W

much the easiest you can do. If the ball moves past any one of the edges, you set it back so it sits

whiteaall’mc:ann‘cerFrame = ballMove; exactly on the edge and reverse its velacity on that axis by multiplying it times the value of BOUNCE, -1.

white?ai e {

_functio 4 this -v¥;
thise= oo this.vys
his*

You ¢an test out this file and see the ball bouncing happily around all four walls, Can't you almost hear the
soft baize rumble already? Again, we highly recommend that you make sure you understand all of what's
going on se far befere continuing.

WX 2004 GAMES MOST WANTED

S0, what do you improve next? You need to take two more steps 1o give the ball some realistic behavior,

First, you'll change the value of bounce. Why? Weil, as it stands, after a bounce the ball simply reverses
its direction but continues on with the same speed. However, some speed is always lost in a real colli-
sion; you can test this by bouncing a ball off of any surface—-the floor, for example. Even the bounci-
est ball won't completely return to the point from which it's dropped. A billiard bail will bounce only
a very small fraction of the distance it falls. To simulate this, simply set bounce to be a fraction of -1.
You can play around with it, but we've found that -0.6 works pretty well. This means that when you
get a hit, the ball moves away in the opposite direction with §0% of its original speed. Try that and see
how it looks. It's a little better, but something is still wrong. . . .

On a real pool table, the baize surface of the table absorbs quite a bit of energy from the ball, slowing
it not only when it bounces, but also every sacond the ball is in motion——all those tiny little fibers slow
the ball down. What you're going to do 7s reduce the velecity by a fraction each frame. You can de this
by multiplying it times a value such as 0.98 each time. in the file, you can set up another constant
named DAMP, which will take care of how much friction the table is going to give off. Set it to 0.38.
Then, in the existing ballMove function, multiply the vx and vy values by DAMP before adding them to
the position values.

Here you can see what you have so far, with the changes in bold:

BALL_DIAMETER = 20; us
BALL_RADIUS = BALL_DIAMETER/Z;
TOP = table_me._y-table_mc._height/2+BALL RADIUS:
BOTTOM = table_mc._y+table_mc,_height/2-BALL_RADIUS;
LEFT = table_me. x-table_mc,_width/2+BALL_RADIUS;
RIGHT = table_mc._x-+table_mc, width/2-BALL_RADIUS;
BOUNCE = -.6;
DAMP = .98;
whiteBall me.vx = Math.random({)*5+2;
whiteBall mc.vy = Math.random(}*5+2;
whiteBall mc.onErterFrame = ballMove;
function balimove(} {
this.vx *= DAMP;
this.vy *= DAMP;
this._x += this.vx;
this._y += this.vy;
if (this. x>RIGHT} {
this. x = RIGHT;
this.vx *= BOUNCE;
} else if (this. x<LEFT) {
this. x = LEFT;
this.vx *= BOUNCE;

}

if {this._ysBOTTOM) {
this. y = BOTTON;
this.vy *= BOUNCE;

o

} else if {this. y<TOP) {
this._y = T0P;
this.vy *= BOUNCE;
}
}

Testing this, you should see a more realistic-looking rollin i ill h
; * z moetion, but you can still improve it. If you
watch it long enough, you'll see that the ball never quite achieves a fuli stop. It gets slower and slovb\:rer.

b s to keep olli g ever so S{lg tly You need a way to seta P N
ut it see Y imum speed, after which it will

Build in another constant, MINSPEED, and set it to 0.1.
Then you need to compare the actual speed against MINSPEED. If it is less, you can stop the ball. But

first you need a way to determine the speed. You have the velocity on the x axis and on the y axis. You
can use the Pythagorean theorem to determine the overall speed. This diagram shows you how:

- speed = sqrt (vx * vx + vy * vy) w

. S

If you sguare the v, square the vy, add them together, and take the square root of that, you'll have
the ball's speed. Sounds cormplex, but here’s the actual code:)

this.speed = Math.sqrt{this.vx*this.w+this.wy*this.vy);
Now, you can compare this to MINSPEED. I it is less, you set vx and vy to 0, and then delete the ball's

opEn‘tfarF:_ra@ handler, if you find the ball stops too suddenly, decrease the value of MINSPEED.
Likewise, if it seems to take too long to stop, increase it. :

" Defeting the on En‘téiFrahig_hdh_digr is another _éfﬁd‘éhcjf point. Ifthe ball isn't
going t_o_.f;_e moving, there’s na use in running.all this code on every frame.
You,can simply reactivate it later when you need it to move again. =

'H MX 2004 GAMES MOST WANTED

Here's the final code, which you can find in the file pool_02.fla:

BALL_DIAMETER = 20;
BALL_RADIUS = BALL_DIAMETER/2;
TOP = table_mc,_y-table_me,_height/2+BALL_RADIUS;
BOTTOM = table_mc._y+table_me._height/2-BALL_RADIUS;
LEFT = table_mc,_x-table_mc._width/2+BALL_RADIUS;
RIGHT = table_mc, x+table_mc._width/2-BALL_RADIUS;
BOUNCE = -.6;
DAMP = .98;
MINSPEED = .1;
whiteBall_mc.vx = Math.random()*3+2;
whiteBall mc.vy = Math.random{)*5+2;
whiteBall_mc.onEnterfFrame = ballMove;
function ballMovel) {
this.vx *= DAMP;
this.vy *= DAMP;
this. x += this.vx;
this._y += this.vy;
if (this._x»RICHT) {
this._x = RIGHT;
this.vx *= BOUNCE;
} else if (this._x<LEFT) {
this._x = LEFT;
this.vx *= BOUNCE;

}

if (this._y»BOTTOM) {
this._y = BOTTOM;
this.vy *= BOUNCE;

} else if (this._y<TOR) {
this. y = TCP;
this.vy *= BOUNCE;

}
this.speed = Math.sqre(this.ux*this.vx+this.vy*this.vy);
if (this.speed<MINSPEED) {)

this.vx = 03

this.vy = 0;

delete this.onEnterFrame;
}

}

Using 2 Cue Stick

Well, that about covers friction. Before you get into collision between balls. you need to contrive a way to
move the cue ball around where you want it, rather than just at a single random speed and direction. In
real billiards you hit the ball with a stick, ar cue. Following that example, let's make one.

1. Create a new layer underneath the code layer and call it stick.

2. Create a new movie clip (Crri+F8) and draw a good-looking sti f i i
g stick. Make it 200 pixels in length. If you
open the flle pool_03. fla. you can see the stick we made, stick mc. You should calt yours ge sarie.

Note that the registration point for the stick is exactly in the center. This will bec i
T ly 3 ome important as you

w

Add the following code to your existing accumulation on the code layers

stick_mc.onEnterFrame = aim;
functior aim{) {
var dx = whiteBall mc. x-_xmouse;
var dy = whiteBall mc._y-_ymouse;
angle = Math.atan2(dy, dx);
this. rotation = angle*180/Math.PI;
this. _x = _xmouse;
this._y = _ymouse;
}

Th:'5' code is simply in addition tc‘ the cede we've already covered up to now in the earfier versions
(we ve_also how delgted ’chg t\(vo lines that assign a random initial speed to the cue ball). You add this
ccfde right aftfl:r the line assigning j:he onEnterFrame of whiteBall me (which you can delete now i you
wash.:long with thet:cwo lines assigning a random vx and vy to the cue ball—they were there to help
test the movement, bounce, and friction, but they’ve become unnecessary as you u i

e ssary as you use the stick to start

Here's an explanation about what the code is doing. It assigns the function, aim, as the onEnterFrame han-
dler for thg stick. This function creates two variables, ¢x and dy. These variables represent the distance
from the stick to the mouse, on the x and y axes. Note the use of the keyword var. This keeps the variables
local.tf)‘ the function. Because you'lt use variables with the same name in other functions, this avoids any
possibility that they'll be confused with each other. It also has the added benefit of giving an increase in
speed and efficiancy.

Youlthen use a bit-of trigonometry to rotate the stick. With reference to the first diagram in the following
SEC‘t‘IOH. the angle that the cue makes with the horizontal is that which you're locking to find. This is
retrieved by use of the atan2 function, where Tan (ongle) = opposite / adjacent and, more speéiﬁcally Tan
(_angie) = dy/dx (see the “Racing Cars” chapter for more discussion of trigonometric functions). This f‘unc-
tion takes a y value and an x value and returns an angle.)

angle = Math.atan2{dy, dx);

N?te that in this case you don’t use var with the variable angle. Although it isn't obvious now, you'lt need
this ang!e vlalue Eate:f, in another function. Rather than recalculate it, you'll just leave it as a timeline vari-
able so it will be available to any function on the timetine.

FRICTION"AND COLLISION'DETECTION

77

iH MX 2004 GAMES MOST WANTED

Unfortunately. all of the Flash trigonometry values return thelr values in radians, rather tljan degrees, .You
nead to convert this in order to use it with _rotaticn, which takes degrees. The conversion formula is as

follows:
Degrees = Radians*180/PI

You can see that the next line uses the keyword this to affect the rotation of the clip dir.ectiy._Finally. you
just set the pesition of the stick to the current mouse coordinates. You can play ground with this file to see
how the stick will always point toward the cue ball, no matter where you move it.

Hitting the Cue Ball

Mow comes your next foray into math-based collision detection. First of_f, you r)eed to de_termine when
you're aiming and when you're shooting. It makes sense that_you would simply aim by moving the mouse
around and then press the mouse button to go into "shooting mode.” For that, you need to add some
onMouseDown and onMouselp handlers.

Return to your coding, Just above the function aim() line, add the following code:

onMouseDown = function () {
stick_mc.onEnterFrame = shoot;
iE
ontouselp = Ffunction {} {
stick_mc.onEntexrFrame = aim;

¥

From this code you can see that, when the mouse is pressed down, stick_mc‘;, onEnterframe handEer
is switched over to a function named shoot. When you release the mouse, it goes back to the aim
function. Simple encugh. Now let's determine what happens inside shoot.

At the bottom of your code, add the following:

function shoot() {

this._x = _xmouse;

this._y = _ymouse;

this.vx = this._x-this.oldx;

this.vy = this._y-this.oldy;

this.oldx = this._x;

this.oldy = this._y;

var dx = whiteBall_mc._x-this._x;

var dy = whiteBall_mc._y-this._y;

var dist = Math.sqri{dx*dx+dy*dy);

if (dist<110) {
whiteBall_mc.wx = this.vx;
whiteBall mc.wy = this.vy;
whiteBall_mc.onEnterFrame = ballMove;
this.onEnterFrame = aim;

}

LEN)

FRICTION -AND COLLISION DET

So what’s happening here? Weil, for now, you'll continue to have the stick stay with the mouse—that's
the first two lines. Then you need to find out how fast the stick is moving. This is so you can transfer
the stick’s velocity to the ball once it hits the ball. You do this by taking the stick’s current position and
subtracting it from where it was the last time this function was run, which was on the previous frame,
You store its location in oldx and oldy each frame, so it can be compared on the next frame, You'll just
store vx and vy for now, and come back to these velocity components later, as required.,

Next, you need to determine when the tip
of the stick is hitting the ball. Again, you'll
use the Pythagerean theorem, this time to
determine the distance from the cue stick
to the ball. If the distance is less than a
certain amount, then the cue stick has hit
the ball. The following diagram should
give you a good idea of haow this works:

-

N

You store the x and y distances in dx and
dy. Note that var keeps these values local
to the function. Finally, you calculate the
distance, dist.

The magic number in this particular case is
110. This is because the stick happens to
be 200 pixels long. The registration peint,
as mentioned earlier, is in the exact center,
This means that it’s 100 pixels from center
to tip. Add to this 10 pixels as half the
diameter of the ball and you have the min-
imum distance hetween the two, If the dis- N
tance is less than this, then you have a)
collision. Chviously, If you change the size of any of your objects, you'll need to adjust this number,
Normally, you'll try to aveid coding in numeric values for sizes of things like this. if your use the _width
and _height properties of the movie clips themselves, you wind up with a more flexible program. For
the sake of simplicity and clarity, we've left these as numeric literals, (Note: You already have
BALL_RADIUS assigned. To remove this magic number, you only have to assign a single new constant at
the start to define the pool cue width,)

Finally, if dist is less than 110, you give the ball the current velotity of the stick. You then assign its
onEnterFrame handler, so that it will start moving. Finally, you switch the stick's onEntexrFrame back to
aim, so you den't accidentally keep hitting the ball. You can test that out and see that you can actually
start knocking that cue ball all over the table!

Here's an extra bit of refinement related to the feel of the shooting. There's too much side-to-side
motion and it’s possible to try to whack the ball with the stick sideways, which gives you some very odd
results. Note, though, that while shooting, you don't alter the stick’s rotation, which is an effect we
wanted. But we wanted the stick to stay tined up with the ball as you move it back and forth, just as if
you had it rested on your left hand and were sliding it back and forth with your right. This took
another bit of tricky math. The following bold lines are the ones you should add ta the shoot function
you've just created. (Note that you can find this version in the support file pool_05.1a.)

79

T T8 i T A TR T wm

TARE T T % A I 206 O TR G T TR TN SEI N D N 415 (R 40 0 sy b bt

FRICTION'AND COLLISION DETECTION

+i hoot{) { ' The formulas you use to find the x and y distance from the ball are as foliows;
function shoo .
var dx = whiteBall mc. x-_xmouse; Kiistence = cos(angle) dist
dy = whiteBall mc._y-_ymouse; : L - oa
:2: d{st = Math.sq}t(dﬁdmdy*dys;) Ydistance = sin(angle)*dist
this. x = whiteBall_mc.Hx—Math.cc'!s(angle)*d:.Lst; Don't forget that you also need to take into account the ball's location to get the actual stage location
this._y = whiteBall me. y-Math.sin(angle)*dist; e of the stick. It all comes together in these two Lnas:
this.vx = this. x-this.oldx; i

this.vy = this._y-this.oldy;
this.oldx = this._x;

is.oldy = this. y; : . |
5212 uoqhi{eﬂalllmcfy;-this. x; 4. There’s one more change to make. It’s in the onMouseDown section at the top of the code, Type in the
¢y = whitegall mc. y-this. y5 i@ following hold code to make the whole thing look like this:
dist = Math.sort{de*dcrdy*dy); :
if (dist<u10) {

this. x = whiteBall_mc._x-Math.cos{angle)*dist;
this._y = whiteBall_mc._y-Math.sin(angle)*dist;

onMouseDown = function () {

i = this.vx; g var dx = whiteBall mc._x-_xmouse;
:Ei:ﬁ:g:ﬁﬂgx - Eﬂi:x: var d)_r = whiteBall_mc._y-Jmo:se;
whiteBall:mc.onEnterFrame = hallMove; ;:r(:;::);g‘titg.5qrt(dx*dx+dy dy);
this.onEnterfFrame = aim; f stick_mc.onEnterFrame = shoot;

} ! ' 1 }
F ¥

Note that you should remove the following code from tljadg previous shoot{) function:

Without this fix, if you put the stick over the ball and then click the butten to shoot, it will immediately
register a hit, and the ball will shoot off in some wild direction. This code checks the distance beforehand.

If the distance is less than that magic 110, the stick is already hitting the ball. In that case, nothing happens.
This forces the user to pull back a bit befcre shooting.

this. x
this._y

_smouse;
_ymouse;

0K, so tet’s break down what you've just written. It's those ﬁrst five lines that are important. Thg ﬁr;t
three should seem pretty familiar. Once again, you're using the thecrem of your goog friend,
pythageras, to find the distance of the mouse from the ball. You want t¢ kn_aep the stle e;t that Sahmi
distance, but rather than being directly attached to the mouse, you want it to stay lined up at tha
angle you just chose while aiming.

Colliding Balls

You've been doing great so far! And if all you wanted to do was shoot a cue ball around an empty table,
you'd be golden. But now you'll add at least one more ball to make it interesting. This is going to reguire a
_— deep breath. Open poel_06. swf for a sneaky preview of the next stage. To get there, here's what to do:
remember earlier, in the aim function, that you left the variable, angle, on the timeline, 'rather than e ' .] o . .)
using var to make it local? Here's where you take advantage.of :chat. You now knO_N the distance gog : ©. In your Library, duplicate the whiteBall movie clip and name it redBall. Double-click the new movie
want the stick from the ball, and you know the angle. You dive into some more trigonometry to fin

clip and recclor it to comply with its name. Drag an instance of it onto the balls layer and name it
out its exact location. The next diagram illustrates what you're doing: REDBALL_mc.

™ There are a number of different strategies regarding where to put your collision-detection code. You
could put it right in the ballMove function, but when you look into that, you'll see that the red ball

would be checking to see if it hit white and the white ball would be checking to see if it hit red. That
angle would be double the work! Once you start adding more balls, each one would have to check every
other one, which could add up to a fantastic amount of excess code.

Math.sin{angle)*dist dist ' ' We like to have the collision code as a separate function running as an onEnterFrame handler on the

main timeline. It will check for z collision between the two balls, and if it finds that they've hit each
: other, it will update their positions and their velocities.

Math.cos {angle)*dist /\\\J

81

You need to set onEnterFrame to vour new function, which will be called checkCollison. At the top of
the code after you defined your constants, type in the following line:

onEnterFrame = checkCollision;

Next, you need to define the checkCollision function. The actual checking for collisien is pretty sim-
ple. It's almost the same thing you did when you checked if the cue stick hit the ball. You simply find
the distance between the two balls, and if the distance is less than a certaln amount, you have a hit.
The “certain amount” in this case is 20, which is stored in BALL_DIAMETER. That's 10 for one half of the
diameter of each ball, as you can see in this diagram:

4 Mo Collision Collision N
ﬂ E
\ o 1 J

Here's the beginning of the function, showing the detection part. Place this at the bottem of your code:

function checkCollision{) { .
var dx = red8all m¢. x-whiteBall mc. x;
var dy = redBall mc._y-whiteBall_mc._y;
vax dist = Math.sqrt(dx*dx+dy*dy);
if (dist<BALL _DIAMETER) {

/{ the code for the reaction will go here
}

}

OK, so you know that you've achieved a collision. The questicn is, what do the balls do now? More
specifically, in what direction and at what speed do they now move off? To figure this cut, you need to
learn a bit of physics. Don't panic, we'll go through the theory step by step.

To approach the next stage, you'll need to be familiar with a few terms:

Speed is the simple term used to tell how fast something is going.

@ Velocity includes the extra information about both the speed at which an object is moving and the
direction in which an object is moving.

Mass is basically how much something weighs, in simplistic terms, {Of course, strictly speaking,
weight is a force, but it's certainly related to the mass. We can see an army of angry physicists
marching toward us with torches, much like the final scene of Frankenstein!)

&= Momentum is defined as mass times velocity, and the principle of conservation of momentum says
that the total momentum of the two objects before the collision is equal to the total momentum
after the collision.

It often helps to simplify things to one dimension to see how momentum works. For example, consider
one ball moving left to right at 10 pixels per frame (a vx of 10), and another ball moving right to left
at 5 pixels per frame (a vx of -5}, Assuming that they hit head on, you can probably predict that each
one will bounce off in the direction opposite the one in which it was originally headed, In other werds,
the first ball will now move right to left, and the other one will now move left to right, But how fast?

' — ™~

N : J

Neow this could ali get very complex, but you've got luck on your side: both balls are the same size, ang
they're made of the same material, so they have the same mass. And here’s the kicker; When two balls
of the samea mass collide in cne dimension, they simply swap their velocities. In other words, ballil.vx
now gets the value of ball2.vx, and ballz.vx takes on the former value of ballil.vx:

- N

0) -5

FRICTION AND COLLISION DETECTION

83

uick look at a small Flash movie that demoristrates this concept: collision_1d.fla. This
ke awas constructed by creating a new movie with a frame rate of 20 fps and placing a red ball and
e

5 mowite pall on the stage with the instance names balll and ballz. We placed the following code in
a Wfirst frame:
the

paldte = 103

ballz.\n(- i £ i
gnterFrame = unction {) {
Dﬂballi'—x += balll.wx;
pall2. X += ball2.vx;
¥l dist = ballz. x-balli._x;
35 (gist<20) { -
pallz._¥ = balli. x+20;
var wxTemp = balll.vx;
palli.vx = ballz.wx;
pallz.vx vxTemp;

}

- fle, you simply add the velocities to each ball, and then check their distance. _This is, in fact,
in fhis straightforward because you're working in only one dimension. If the distance is less than 20,
preﬁ{he palls have hit. Remember in the code for bouncing off a wall, when the ball hit the wall, you
el ioned the ball so that it was resting right on the edge of the-wall? Well, you need to do the
repos‘thing with this collision. Otherwise, the balls will momentarily appear to overlap. This can also
sarﬂee the balls to stick together in circumstances in which the resulting velocities are not enough to

C::arate ther?-
§

are complex methods to determine where each ball would actually be placed at the moment of

The ollision. We're going to skip them and simply move one of the balls to the edge of the other one.

me© angry physicists are getting closer!) This is another one of those cases in which you can stray

105 ality for the sake of simplicity, as.long as the result locks OK. If you were trying to land a rocket

f-’"mé‘itan‘c planet, you coutdn't get away with this. just remember, this is only 2 game! As long as your

on onszstencies aren’t noticeable and distracting to the player, you can take a few liberties with reality.
inc

ou just swap the w's of each ball. Mote that you need to assign one ball’s velocity compc_ment
et ym orary variable first, or it will be lost when you give it the value of the other one. Test this out
1w t;hﬂferent values for the velocities, Something that might seem a little unreal at first is if you give
il St vx of 0. When the other ball hits it, the moving ball will stop, and the stationary ball will start
(Jﬂe!J with the other’s velocity. Though it may look a bit strange, be assured it's a realistic reaction. If
mi‘::_, played much pool in real life, you've undoubtedly seen similar eccurrences on the table.
0

ou've figured this 2ll out in one dimension, you can jumnp to the world of two dimensions. In this
o - advanced math is unavoidable, but we'll try to keep it as painless as possible.

!
@t ¥

Take a lock at the following diagrarm:

In the diagram, two balls have just collided. You can see a dark
arrow extending cut from each of them, which shows each
ball’s velocity. The arrow is known as a vector. A vector shows
direction and magnitude. Remember that velocity is a certain
speed in a certain direction. In the diagram, the {ength of the
arrow shows the speed of the ball, and obviously the arrow is
pointing in the direction the ball is heading. We also put in
some dotted arrows that show each bail’s velocity on the x axis
and y axis. You can see how these add up to the total velocity.

You can see also that we drew a double line between the two
balls. This is the angle of collision, and it’s very important. The
only part of the balls’ momentums that you care about is the
amount that lies aleng this angle. If you can find that, you can
figure the resulting velocities exactly as you did previously for a
one-dimensional collisicn.

S0 how do you figure out how much of the momentum or

velocity lies on that line? Well, look at the next diagram.
It's actually the same image rotsted a bit to make the
angle of collision lie flat and adjusted the x and y velocities
of each ball. These are now labeled vx1, vy, vx2, and vy2.

Because the angle of collision now lies exactly on the x
axis, all you're concerned about is the x velocity of each
pall: vx1 and vx2.

Y
T

ey velocities will

You can then swap the x yelocitie®
stay the same,

hich gives you
K W

Finaly, rotate the wiole thing bz";e.\,e only shown the
the final velocities for each obl®

final vx and vy of ae ball here):

\.

it 50 how ¢o you go about rotating this thing? First off, you need to
ALOS . much to rotate it. You need to know what that angle is. If you
know ack to when you were rotating the cue stick, you got the distance
hink p the stick and theball on the x and y axes, and you used
beme:tanz(d)’: dx) to get the angle, You'll do the same thing here to get

Mat d'istﬂnce between the twe balls,
the

| gzme (or the pool_06.f1z file). You aiready figured dx and dy to
d to plug it into the atan2 function. Go to the handily commented

I pO
i b tells you “the code for the reaction will go hexe”. Amend

Head back to your ongd!" st
check the distance. so YU de
line at tha bottom of the &

it to look like the fellowin®

ne®
whie

i*(disuaALL_DIAMETEﬂ{n;(dys)

var angle = Hath-? ine and cosine of this angle several times. Rather than figuring them

, i in a couple of variabies:
. To do the rotation, yo it usethe calculations only once and save them in a coup

Out over and gver, you

iF(distepALL DIAMETER}gz[dy, &x);
var angle = sath 3% gl
var cosa = Math'c?spnsle);
vax sina = Ma‘ﬁh'sln(a

pXA)

FRICTION AND COLLISION DETECTION

Now for the rotation part. With reference te the previous diagram, you have a vector going out to x, ¥
at a certain angle; let’s call that angle A. If you rotate that vector by that angle, counterclockwise, you'll
get a new vector, x1, y1 Here's the formula you use to accomplish that:

X1
yi

cos(A)*x + sin(A}¥y
cos(A)*y - sin(A}¥x

o

If you instead want to rotate the vector clockwise by angle A, you use a very similar formula;

x1 = cos(A}*x - sin(A)*y
y1 = cos(A}¥y + sin(A)*x

All you do is change the + and the -

Let’s pull this all together. Keeping in mind the earlier figure that illustrates the swapping of the x
velocities, in the game code you want to rotate the vector represented by redBall_mc.vx,
reddall_me.vy, and the vector represented by whiteBall_mc.vx, whiteBall _mc.vy. This will give you
roughly the image shown in {ast diagram {the one illustrating the final velocities), with vectors repre-
sented by vx1, vy, vx2, and vy2, Here’s the cede for that part;

1F(dist<BALL_DIAMETER){
var angle = Math.atan2(dy, dx);
var cesa = Math.cos(angle);
var sina = Math.sin(angle};

var vxl = cosa*redBall_mc.vx + sina*redBall_mec.vy;
var vyl = cosa*redBall_mc.vy - sina*redBall_mc.vx;
var vxz = cosa*whiteBall mc.vx + sina*whiteBall mc.vy;
var vy2 = cesa*whiteBall mc.vy - sina*whiteBall _mc.vx;

4. Now you just swap vx1 and vx2 and rotate the vector back clockwise. Note that in this next rotation

you're retating the temporary vxs and vys and the result is the actual vx and vy of each bail:

var tempvx = vxi;

Var vx2 = vxi;

var vxi = tempwx;

xedBall_mec.vx = cosa*wxd - sina*vyi;
redBall mc.vy = cosa*vyl + sina*wxi;
whiteBall mc.vx = cosa*wxz - sina*wy2;
whiteBall mc.vy = cosatvy2 + sinabvxz; -
redBall mc.onEnterFrame=hballMove;
whiteBall mc.onEnterFrame=ballMove;

Dan't forget the {ast step. You want to make sure that both balls are now running the ballMove func-
tion and acting on their newfound velocities.

i In playing around with this and trying to malke it a bit more managezble, we found one pretty coc!

shortcut. Because you're figuring vx1 and assigning it to vx2, and figuring vx2 and assigning it to vxa,
you could simply just assign them to their opposite right as you figure them, and avoid all the swap-
ping as follows:

. <p¢BALL_DIAMETER){
i (dlsangle = math.ztanz(dy, dx};
Vai cosa = Math.cos(angle);

val Ca = Math.sin(angle);

vaz Sl:a= cgza*rengllgmc.vx + sina*red8all_mc.vy;

var vx1 = cosa*redBall mc.vy - sina*redBall_mc.vx;

v vy1 = cosa*whiteBall_mc.vx + sina*whiteBall mc.vy;
vz - cosa*whitedall mc.vy - sina*whiteBall mc.vx;

Y0 ol mc.vx = cosatuxd - sinatvyl;
T pallme.vy = cosa*vyl + sina*vxi;

re-tega"_[l me.vx = cosatvxa - sinatvyl;

u %teBall_mC-W = cosa¥vy2 + .sina*vxl; -
‘;235311 e .onEnterFrame=pallMove;

hitEBail me.onEnterframe=ballMove;
o o

i i times, it really does start 1o make
i ks like a lot, but trust us, after you do this a few : :]
we kﬂf""'dthtLS l;)sowe definitely have, we haven't yet found a simpler way of doing ail th|§. At‘fany ra;e,
¢ens® ’ ru?: the file and see just how realistic the play is. you'll see it's worth the typing, if not the
when\,;;-én of trying to figure out exactly what's going on.

agt”

- st one more thing you want to add to this function, Recall in the small collision_1d.flafile
‘s jus

T ere? ositioned ane of the balis to be just touching.jci']e other. AEthc_)ugi) it doesn‘t s-eitmttz mci(':
that you rep ce here, once you add a bunch mere objects into the mix, it will. So you'll just take
abi iffereréause yo'u’re now working in two dimensions, it's a bit more complex. t‘han just adding the
of it _O::EE:; on the x axis. You need to add the diameter along the angle of ceilision.

dia
pall

20 pixels

i Is done by the following two lines:
The
gall mc. x=whiteBall mc._x+cosa*BALL_UIAMETER;
Iegsan’mc.j:whitesau_mc. “y+sina*BALL_DIAMETER;
18 - -
can go in right after you figure the values for cosa and sina. Here's the whole function;
These
son thackCollision(}) {
fu:::ldx = redBall_mc._x-whiteBall_mc._x;
var dy = redBall mc._y-whiteBall mc._y;

"FRICTION-AND COLLISION DETECTION

var dist = Math.sqrt(dx*dx+dy*dy);
1f(dist<BALL_DIAMETER){
var angle = Math.atanz(dy, dx);
var cosa = Math.cos{angle);
var sina = Math.sin{angle);
redBall mc._x=whiteBall mc. x+cosa*BALl_DIAMETER;
redBall _mc._y=whiteBall mc._y+sina*BALL_DIAMETER;
var vx2 = cosa*redBall mc.vx + sina*redBall mc.vy;

var vyl = cosa*red8all mc.vy - sina*redBall_mc.vx;
var vxi = cosa*whiteBall mc.vx + sina*whiteBall_mc.vy;
var vy2 = cosa*whiteBall mc.vy - sina*whiteBall mc.vx;

redBall mc.vx = cosa*vxi - sina*vyi;
redBall mc.vy = cosawyl + sina*vxi;
whiteBall mc.vx = cosa*vxZ - sina*wyz;
whiteBall mc.vy = cosa®vy2 + sina®vx2;
redBall_mc.onEntevFrame=ballMove;
whiteBall_mc.onEnterFrame=ballMove;

}
}

The anly remaining problem s one that only presents itself with the new version of Flash. In Flash MX
and earlier, an undefined variable, when evaluated within a mathematical operation, defaulted te zero,
In Flash MX 2004, it will evaluate as undefined, and so will most likely cause a result of NaN, or “Not a
Mumber.” You can demonstrate this with the follewing code in a new Flash document:

trace(34 + y);

In Flash MX, this would have returned “34” in the Output window, but now it will return “NaN”™, How
does this affect your current code? Well, you have yet to assign vx and vy vatues for the red ball (the
white ball gets assigned these values in the shogt function). For the colfision to work, you need to
declare these variables at the start.

3. Head to the top of the code and add the foliowing bold lines:

DAMP = .98;

MINSPEED = .1;

redBall_mc.vx = 0;

redBall me.vy = 0;
onkEnterfFrame = checkCollision;

Now you have some default values for your red ball’s velocity and your operations in checkCollision
will work like a charm, Test it and see.

And there you have it a 99.9% realistic billiard-ball collision! Once you've convinced yourself that this will
fool ait but the mast finicky of physicists, you can move on and throw some more color on the table,

Multiple Collisions
When you open up the next incarnation of the game, pool _07.Fla, you'll immediately see that we've
added five more balls to the table. We know what you're thinking: Shoutdn't there be ten balls, plus the

cue? Of course there should be! But we saved that for your after-class assignment. You'll get rolling with
what you see there, -

" th

o4 GAMES MOST WANTED

i je cli d create blue, green, yellow, and
e way you created the red ball, duplicate the movie clip an
in t:f SI:;HS Agd them to the balls layer as blueBall mc, greenBall mc, yellowBall mc, and
a . K

bla,;ksall_mc.

¥ i f the balls were hard-coded. The
here’s a problem. In the last version, the faames o L
OVZkCcvllision function would work with—and enly with—twe objects named redBall_mc and
Chiteﬂall me. There are two issues with that.
" .

i it isn® i ion | te because you have to completely
‘esue is that it isn't flexible. Already the function is obsole !
nzdfit to work with your new additions. And when you go to d’o your homework, you'll have to
iiode it again to work with whatever you add,
r

i i if vou hard-code each ball's name, you wind up with a huge, redundant, ineffi-
ne o;g:gisssiﬂlt&i I:gge you wrote for coliision and reaction was just for two balls. You'd ‘have to
e a section of the function with all that code just for comparing white to red, Then yeu'd need
e ar section the same size for white to blue, another for white to purple, aqd so on. When you got

aneth n with zll of the calors compared to white, there would be another secticn for red to blue, red
t:rgt:rgple and so on. And then another section for blue compared to all the others.
¢ }

idi "I wer just once and use some variables
rez, that would be ridiculous. Instead, you'll write the code jus
th(;té of the actual names of the balls. That's easy enough. Then you just need a way to loop through
;ﬂ;d get the ball's hames and plug them into the variabtes.

i i lishes this. You just put the names of all
tock at the code in the file, you see the first line accemp
feoil;aus into an array. Put the following line at the top of your code. Then you can loop through the
array with @ for loop and get each ball to test.

palls = [whiteBall mc, redBall mc, blueBall_mc, yelilowBall_mc,
wpurpleBall nc, greenBall mc, blackBall mcl;

i i ing li i hought | was pretty clever | made @
ersanally, the first time | ever did something like this, | t .
T’:.Vbli nested for loop. The outer loop stepped through all of t-he elements to get the first object to
t:st. 5o, for instance, the first time through it would grab the white ball.

hen the inner {oop would again step through the array., testing the white ball against each object. It
1ooked something like this:

for{var i=0;i<balls.1ength;i+-|:){
for(var j=0;j<balls.length;j++){)]
7/ test for collision between balls[i] and balls[j]
}
¥

it wi i bug appeared on the first loop,
cool—it will test each ball against every other ball! But the first ; s
Pr;gr}; it tried to test the white ball against the first element of the array, Yvhlch was the white bai}.
:fmm .. not good. 5o | added an if statement to make sure that the two objects being tested weren't
the same object. A bit clunky, perhaps, but it handled the bug.

i i hite ball is tested against every other

| realized another problem. On the first outer loop, the w t v
Thﬁﬂ\‘or collision. Excellent. Then, on the second outer loop, the red ba.il is tested against every
biher ball—including the white ball. But | already checked for red and white. On the next loop, the
g;ue pall checks against white and red, both of which have already been checked. It turns out | was
dolng twice the number of tests necessary.

tea

I'd like to say that | put together a simple and elegant solution that totally handles this, but | can't.
However, | can say that | finally read about the simple and elegant solution that totally handles this and
is used by anyone programming this stuff.

Basically, you just start the inner loop with an index one higher than the current outer loop. If the
outer loop is on the fourth element, the inner loop only has to pick up the fifth onward. Also, because
all will have been tested by the time the outer loop gets to the [ast element, you don't need to test
that against anything. So you can end the cuter loap at length-1. Here's how the revised version looks:

for(var i=0ji<balls.length-1;i++){
for(var j=i+1;j<balls.length;j++){
// test fox collision between balls{i] and balls[j]
}
b

Not bad! Four extra characters for twice the efficiency!

Now, plug that into the checkCollision function you wrote in the fast exercise;

function checkCollision() {
var len=balls.length;
for {var i=0; d<len-1; i++) {
balll mc = balls[i};
for (var j=i+1; j<len; j++) {

ball2 me = balls[j];

var dx = balla_mec._x-ball2 mc._x;

‘var dy = balll_mc._y-ball2_mec._y;

var dist = Math.sqrt{d*dx+dy*dy);

if (dist<BALL_DIAMETER) {
var angle = Math.atanz(dy, dx};
var cosa = Math.cos(angle);
var sina = Math.sin(angle);
balli_mec._x = ballz_mc. x+cosa*BALL_DIAMETER;
balli mc._y = ballz mc._y+sina*BALL DIAMETER;
var vx2 = cosa*balll_mc.vx+sina*balli me.vy;
var vyl = cosa*balll_mc.vy-sina*balld_mc.vx;
var vxl = cosa*ballz_me.vx+sina*ball2_mc.vy;
var vy2 = cosz*ballz_me.vy-sina*ballz_mc.vx;
balll mc.vx = cosa*vxi-sina®vyi;
balll mc.vy = cosa*vylisina®vxi;
ballz mc.vx = cosa*vx2-sina*vyz;

LU LI B

bali2_mc.vy = cosa*vyzisina®vxz;
balli_mc.onEnterframe = ballMove;
ball2_mc.onEnterframe = ballkove;
}
}

“"FRICTION AND COLLISION DETECTION

sH MX 2004 GAMES MOST WANTED'

D IO TR AR T S S D AT PUT O e —— —

You can plainly see the two for loops, which are exactly as you]ustl qute them. Aftetj each loz?tp.);?I:
assign the array element te a temporary variable. A[though.thzs might indeed .be easier o w;: e, 1
most obvious benefit of using the temporary variable is that.lt‘s a lot more efﬁcmnt to deal with a sim-
ple varizble than to access an array like that. It works out a ilttl!a faster. ‘For tr}ls same reason, you store
the length of the array in the variabie len instead of accessing it every iteration of each loop.

There are, of course, ather changes in your code in the midst of these new locps. Whereas befgre you
had redBall mc and whiteBall me you now have the generic balli me and ball2_mc, which will
change on each loop through. Make sure those are changed in your code.

#. As a final step, you need to make sure to assign default vx and vy xfalu_!as to all of the table’s balls. You
can do this in a single line for. .in loop 2t the top of your code, running through your balls array:

balls = [whiteBall mc, redBall _mc, blueBall me, yellowBall_me,
wpurpleBall_mc, greenBall mc, blackBall mcl;

for {i in balls) balls[i].vx = balls[i].vy = 0;

Sinking the Balls)
You're now approaching the end of the line for your billiards game. There has been one really obvicus

amission so far: holes. Sure, you can knock the balls around, but they need somewhere to go eventually.
Check out pool_08.fla if you want to see where you're headed.

Now we're going to teach you yet another time- and code-s‘é@ing tric_k for collision detection, Obviously,
you're going to need six holes on the table, two on the sides and_ one in eagh of the four corners. You can
make a round black shape, scmewhat larger than a ball, turn it into a movie clip, and put it in place. You
wind up with something that looks like this:

The two versions of this command are this;
movieClipi.hitTest{movieClip2)

and this:
movieClip.hitTest{x, y, shapeflag)

The first version merely tests if movieClipt has collided
with movieClip2. It does this by using bounding boxes, A
bounding box is an imaginary rectangle that completely
surrounds a movie clip. Although this is the quickest
method, it’s also the least accurate. As long as the two
bounding boxes of the clips overlap at any point, hitTest
will return true. Here's a simple example of a couple of
irregularly shaped movie clips and their associated bound-
ing boxes;

You can see that although the two shapes are not touching
at all, the bounding boxes are, Thus, Flash would consider
that a collision between the twe had taken place. This is
fine for rectangular-shaped clips and often passable for
small, fast-moving objects. But in this case, it's not nearly
good enough.

Let’s look at the second version. You see this has an x and a
¥ as arguments, It will return true if the stage coordinates
represented by that x and y are hitting the movie clip. If

FRICTION'AND 'COLLISION‘DETECTION

you pass an argument of true to the shapeflag argument, Flash will look at the shape of the visible movie
clip. if that x, y location represents an area that has some color on it, it returns true. i you give shapeflag
an argument of false, it goes back te using the bounding box of the clip. But remember, now you're test-
ing a specific point to see if it's within the box.

If you look into it closely, you see that the x, y version with shapeflag set to true is best for our pur-
poses. The x and y will be the _x and _y location of the ball, which is its center, If you imagine the fol-
lowing two examples, the first shows a ball close to, and somewhat overlapping, a hole. But the center
would still be solidly on the table, so it won't fall in. The second example shows the hall at the point at
which it will actually drop into the hole and, in this case, will generate a collision.

r ~

Ho Collision
(Doesn’t Fall In)

Collision
(Falls In)

Now, each ball will nead to test to see if it has hit any of the holes. Maturally, th~i5‘ W(_)uld be best done;n
the ballMove function, and it would have to occur right after the final positioning of the ball. The
built-in hitTest function serves just fine for this.

FLASH MX 2004 GAMES MOST'

OO T I 0 O D I S U 1 o mm

e this*
The relevant code woutd look € this._Y» true)}{

re, B2
1#(hole_nc.hitTest{thi%"~
/1 do something heT® 3 '
ve function, the word this would refer to the ball running that
o \

1 N :

bass tion.)
. . e ¢ the ball in ques

{As this code would be inside i the |ocaticn ©

function. 5o this. x, this. Y na hole, you need to figure out how to do all six. Here’s where we
e k
et aragraphs back.
Now that you know now to © od afew? ‘
reveal the neat trick we mento” e which hole the ball has fallen in—ycu just want to know if the

X h P d
o reaty les into one otherwise empty movie clip ca.lled holes an
The key to this is that you dot tt 2l of these :Eis waorks just fine as long as you're still using shapeflag.

i ot ovie CilP: h L o
ball has hit any hole. So.¥0U By mowe Sl o010 nd will atways register a hit. This little trick lets you
then do a hit test on that e”wvers the entire 12

Otherwise, the bounding bo* Czr (han si% _ , .
get away with one it test, @ the theory, open the file pool_08.fla. The first thing you'll see is
u

i mavi " bout mak-
All ri thee ™ ‘ra working on your own mavie, here's howto go a
Il right, now that you've gwf;les init if you're

that the table now has some

ing them: o the balis layer and call it holes. Use 2 circular black paint brush and

]
Create a new layer Unde:lo the layer
paint the holes directly © r to select everything and select Cenvert ta Symbol (F8). Call the

. aye K . tor.
ok & of holes me in the Property inspector.
With the holes in place: -dlan ngtanice name]

symbol hgles, and give 5o be prepared to nudge them arcund urtil they give good play.

he hole? is ‘°'§§gie they'll fall in too often. If they're too far off the table, they'll
L4 the .

f th bl o far the: ge it. We cund the corner pocke par-
0 t t a chance to Ieglste an ri ts
e halls are too before Y

always bounce off the &
ticularly tough.

E\j

change here is in the existing ballMove function, Here it is with

nly
el €€
% S0 what about codiﬂﬁ?luded;

the hit test section in€

{
Function ballNOVEQ
this.vx *= DN
this.vy *< 91,
this, x += 1207 0
this. y + thlﬁﬁm {
if (this._ﬁg o
iﬁiﬁaﬁ i BOUN&E;’,EFT) {
} else if (tl:-iS%-;
et

}

if (this._y»BOTTOM) {
this. y = BOTTOM;
this.vy *= BOUNCE;

} else if (this._y<TOP) {
this._y = ToP;
this.vy *= BOUNCE;

if (boles_mc.hitTest(this. x, this._y, true)} {
this._x = 20000;
this._y = Math.random{)*10000;
delete this.enEnterFrame;
}
this.speed = Math.sqrt{this.vx*this.vx+this.vy*this.vy);
if {this.speed<MINSPEED) {
this.vx = 0;
this.vy = 0;
delete this.onEntexframe;
}
}

Here’s what the code does. When a hit test comes back positive, you need to remove the ball. Had you
originally attached the balls using attachMovie, you could simply use removeMovieClip here. But
because you created the balls in the authoring environment, you have to resort to the old-fashioned
method of removing movie clips—essentially shooting them off inte the void. In other words, you just
give them an _x or _y position that's way off the stage so they'll never be seen, In this case, you also
want to make sure that subsequent balls den't land in the same position, thus triggering later colll-
sions, so you add in a-random factor that should pretty much keep the balls away from each other
95.9% of the time, Finally, you delete the onEntexFrame handler, which stops them from moving. (As a
side note, in fact it /s possible to remove a movie clip created and placed on stage in the authoring envi-
ronment by first swapping the clip to a positive depth. In this case, however, this would reguire you to

then reattach the balls upon the stage if a new game was to begin, which is additional code that we
don't cover in this chapter.)

| - We admil: there are o few improvernents that could be made to this whole .
_system. One thing thot could bedone is to.remove the ball's name from the
array using Arrayvsplice/ This would keep the coliision-detection code from

-trying 1o check the ball now that it's out of play. Our only justification is that
the code has been optimized encugh to work smoothly with oll the balls on

‘the table, as it must at the beginning of the game, Although you coutd make
it mare efficient.as the game goes.on by removing balls from the array, we
decided not to fix something that worked. (Oh, and also, it’s an extra-credit

_homework gssignment if you want to take it on!) Furthermere, we wanted to
spend the last few pages of this chapter making a few enhancements that

will improve the visugl and qudio experience,
| T : i

v

D COLLISION DETECTIO!

SH MX 2004 GAMES MOST WANTED

As an additional note, you may want to determine which ball wasjus't sunk so you can code in penalties for
scratching, or sinking. the eight ball. You do this by testing if the current ball is equal te the ball of choice:

if {holes_mc.hitTest(this. x, this._y, true)) {
if{this == whiteBall _mc){
// code here for what happens if you “scratch”
} else {
// otherwise, it was a colored ball:
this._x = 10000;
this._y = Math.random{)*10000;
delete this.onEnterFrame;
}
}

Realistic Shadows

Mow let's add a few visual enhancements, First off, you'll give the balls a shadow, It would be relatively easy
to edit each ball and add a little shadow shape under the coler of the ball. It would look fine all by itself.
But then you would soon see that each ballis either above or below each other ball. And that means all of
the graphics for that ball. Therefore, if the white ball was on top of the red bail. the white ball's shadow
would also be on top of the red ball. That would look very. strange, to say the least.

in fact, a simple way around this is to keep all the shadows ¢n their own layer and move them around as
the correspending balls are moved. Although this adds a bit to the computation required, it ends up not
taking up too many CPU cycles to have much of an impact.

To break down the finished product, open pool_o09.fla.

Create a new layer just above the table layer and call it bali shadows.

3

Create a new movie clip composed of a dark green circle, with a size of 20x20 pixels. instead of mak-
ing its registration point dead center, move it up and to the right just a little to offset the shadow from
the ball '

[

On your ball shadows layer, drag seven copies of the shadows mevie clip. Give them instance names of
shoi through shey.

The code amendments are once again quite simple. Add these few lines to the top:

balls = [whiteBall mc, redBall_mc, blueBall_mc, yellowBall _mc,
wpurpleBall mec, greenBall_mc, blackBall mc];
for (i in balls) balls[il.vx = balls[il.vy = 0; .
shadows = [sho1, shoz, sho3, sho4, sho5, shoé, sho7l;
for (i=0; i<7; i++) {
balls[il.shadow = shadows[i];
shadows[1]._x = balls[i]._x;
shadows[i]._y = balls[i]._y;
¥

ut

Here, you put th_e names of the shadows in an array, just like you did with the balls. Then you loop
through and assign each ball its very own shadow. You do this by giving the ball a property called
shadow. This holds a reference to a particular shadow movie clip.

Move further down into the ballMove function again, and you'll see how easy it is to manipulate these
shadows. You simply wait until the ball has reached its final _x, _y position, and then you move the
shadow to the same place. Because all the shadows are on a layer below all the balls, they will look just
right. The code to add is in bold:

functicn ballMove() {
this.vx *= DAMP;
this.vy *= DAMP;
this._x += this.vx;
this._y += this.vy;
if (this. x>RIGHT) {
this. x = RIGHT;
this.vx *= BOUNCE;
} else if (this._x<LEFT) {
this._x = LEFT;
this.vx *= BOUNCE;

h

if (this._y>BOTTOM) {
this._y = BOTTOM;
this.vy *= BOUNCE;

} else if (this._y<TOP) {
this._y = TOF;
this.vy *= BOUNCE;

}

if {holes_mc.hitTest(this._x, this. vy, true)) {
this._x = 10000;
this._y = Math.random{)*20000;
delete this.onEnterFrame;

}
this.shadow. x = this. x;
this.shadow._y = this._y;

this.speed = Math,sqrt{this.vx*this.vx+this.vy*this.vy);
if {this.speed<MINSPEED) {
this.vx = 0;
this.vy = 0;
delete this.onEnterFrame;
¥
}

FRICTION AND’ COLLISION DETECTION

97

=

SH'MX 2004 GAMES MOS

Well, that was too easy, and it really adds
some depth to the whole game.

Why not take it a step or two further? Let’s
give the stick a shadow. Actuaily, you'll give
it two shadews: cne shadow for the table
and another for the floor. If you cffset
them a bit differently, it will give an incred-
inle sense of depth and really make the
table itself seem to pop right up off the
floor.

Check out the next iteration: pool_iol’ﬁla.

5

in your Library, duplicate the stick movie ¢lip and call it stick shadow. Select the whole thing and fill it
using the Paint Bucket tool set to black with a 30% alpha setting (you can set this in the Color Mixer
paletie).

Create twe new layers. The first, named fioor stick shadow, should be right above the floor shadow
layer. The second, table shadow, lies right above the balls layer. Each layer has an instance of the new
stick shadow movie clip, named floorShadow_mc and tableShadow mc.

All you need to do is pesition them each time the stick moves. This takes a mere six lines of‘code.
You'll change the _x and _y position of each shadow, and then the rotation. This code will go in two
places: the aim and shoot functions. Here they are:

[l

function aim{) {
var dx = whiteBall _mc._x-_xmouse;
var dy = whiteBall mc._y-_ymouse;
angle = Math.atanz(dy, dx);
this._rotation = angle*180/Math.PI;
this._x = _xmouse; '
this._y = _ymouse;
tableShadow_mc._x = this. x-5;
tableShadow _mc._y = this._y+5;
tableShadow_mc._rotation = this._rotation;
floorShadow mc._x = this. _x-20;
floorShadow mc._y = this._y+20;
floorShadow _mc._rotation = this. rotation;

function shoot() {
var dx = whiteBall_mc._x-_xmouse;
var dy = whiteBall mc._y-_ymouse;
var dist = Math.sqrt(dx*dxrdy*dy);
this._x = whiteBall mc._x-Math.cos{angle)*dist;
this. y = whiteBall mc._y-Math.sin{angle)*dist;
this.vx = this, x-this.oldx;
this.vy = this. y-this.oldy;
this.oldx = this._x;
this.oldy = this._y;
dx = whiteBall_mc. x-this._x;
dy = whiteBall_mc._y-this. y;

1]

dist = Math.sgrt({dx*dx+dy*dy);

if (distg110) {
whiteBall mc.vx = this.vx;
whiteBall mc.vy = this.vy;
whiteBall_mc.onEnterFrame = ballMove;
this.onEnterFrame = aim;

tableShadow_mc. x = this._x-5;
tableShadow _mc._y = this._y+5;
tableShadow mc._rotation = this._rotation;
floorShadow_mc._x = this._x-20;
floorShadow_me. vy = this. y+20;
floorShadow_mc._rotation = this._rotation;

}

As you see, the table shadow is offset 5 pixels from the stick, and the floor shadow is offset 20 pixels.

This makes for a great optical iliusion of depth, Because the floor shadow layer is under the table, you
only see that shadow on the floor. Unfortunately, the table shadow will appear not enly on the table,
but also on the floor, Because the stick shouldnt cast a double shadow like that, it ruins the effect a
bit. You need a way of limiting the table shadow 1o the table itself.

(el

What you need is a simple mask, There are two ways you can use
a mask here. You can either create a mask layer and draw 2 mask

or use a scripted mask. Altheugh a scripted mask is pretty cool,
it's easy encugh to use a simple mask layer here. Just make a new
layer above the table shadow layer. Draw a filled rectangle with
any colar in it. Adjust the size to completely cover all parts of the
table but not extend onto the fioor. Then right-click (Cmo-+click
on a Mac) that layer in the timeline and set it to be a mask layer.

Now test the file and you'll see that you've got ali the basics of a very
nice little Flash pool game. We hope it's inspired you to take things
further. We leave it up to you to extend the game to include rules and
player details. And wouldn't some nice sound effects enhance the
player experience and help put some emphasis on your wonderful
collision detection?

99

TR TR I R O D AN 0 0 O i O T T I 5 4N 2

Sym mary

This is a simple, slick game that demonstrates some pretty useful principles. We've made an effert to pol-
ish it 50 you can pl‘ay and enjoy it, but it’s really only a starting point. There's so much more you can de
with this. You may incorporate some of what you learn in the othar chapters of this bock to expand the
features of the game. You might want to finish it and create a traditional two-player billiards game. Or per-
haps bring in some aliens who try to steal the balls off the table if you don't sink them first? We leave the
creativity up te you.

|n any €ase, in this chapt.er we coverad a variety of types of collision detection: object to wall, object to
object using calculated dlstanpe. and object to object using hitTest with bounding boxes and shapes. we
also covered hovy to test multiple objects against each other and one object against many objects, and how
toreactto @ cellision between two moving objects when they have the same mass. If you're interested, you
can easily find the formulas for conservation of momentum and worlk out how te fit them into
Checkcullision. This will enable you to handle objects of different masses, and it opens the docr to many
new possibilities for physically realistic games.

