ActionScripting

Adding simple interactivity to your movies

In this section

In this section, you will learn how to:

* control the main Timeline using a button + use a conditional statement

+ control a Movie clip’s Timeline * create a preloader

+ control a Movie Clip’s properties * set dynamic text

+ setand use variables + create drag and drop actions on Movie clips

ActionScript is the name of the scripting (coding) language that Flash uses to add
interactivity to a movie. ActionScript is similar to JavaSeript, the language that some web
pages use.

ActionScript can produce some very complex results and this chapter will skim lightly
over the most basic techniques—don’t expect to become an ActionScript expert overnight!

In the previous three sections you made components and movies that could all have used
some ActionScript. However, in those sections your focus was on using graphics. In this
section the focus is on ActionScript, not graphics. Bring the two ideas together in your
own time to produce attractive, interactive movies, ’

ActionScript 3.0

Flash CS3 introduces a new standard for ActionScript—version 3.0. Tts implementation
differs quite significantly from carlier versions of ActionScript and will mean that even
at this basic level some techniques will need to change. This manual will use the new
ActionScript 3.0 standards.

ActionScript basics

The Actions panel

ActionScript is written directly into the main window of the Actions panel. Call up the
Actions panel by choosing Window > Actions (Option/Alt F9). Although this is a complex
tool, there are a few parts that are used most often:

» Use the main window to write actions, Addanew Find target path :

Seriptlist scriptitem toan instancT (h/eck syntax Auto format

« Add parts of scripts from a list with the
button or by dragging-and-dropping

At - Frame » b

Ao 35 (e POy ER® ST N kipthms 3
from the script list. @i getVolue Function 3. [FTT7 gobahn oy (0,
@ getvalue (Tween) :
+ ‘Point’ to symbol instances with the target @ getvalue eyfram |

@ getvalue (Motion) £ :; Typical ActionScript
path button. @ gewvalue (Simplet: w d

@ getddeoPlayer Fe i B

* The Movie Explorer (bottom left corner) g gettFor Beziecse . |
. giobal (RegExpt :
shows the movie parts. globalTaLecal (Dis

@ GlowFiher (GlawRd -
@ gorAndPlay (Movt
Syntax and lettercase ® goroandsion o
B CradlentBeveiFilter]
@ cradientGlowFilter -

ActionScript must be written in a certain way.

: ERRRE o §
Although the rules of ActionScript syntax are ¢ Al currem Sefection

e [& actions : Frame 3;
too complex for this introductory manual, be ¥ g seenc

iine 1 of 1, Col

g

aware that the slightest mistake can make your

movie stop working. '
OVI€ S10p WOTKIIE Movie Explarer . Makn window

0] acth1ns < Frame 3¢

Copyright © 2007 Natcolf Publishing Chapter 4: ActlonSaripting | 45

For example, there are rules about letter-case:

-+ ActionScript is case-sensitive. That means it matters whether something is written
with upper or lower-case letters,

+ Words are written in ‘Intercap’ format. That means that words start with a lowercase
letter. If a few words are run together, any word after the first word starts with an
uppercase letter. For example: play; gotoAndPlay; nextFrame; nextScene, @ Copy-pasting code

You can copy and

There are also rules about brackets: 3
paste code in the

« Parentheses() follow words to show that those words are instructions to Flash. Actions window, but
For example: stop(); gotoAndPlay (3); The purpose of the brackets is to give you will have to use
the shortcut keys (38/

thing t t extra instructi in.
us something to put extra instructions in Ctrl Cand 38/Cirl V).

+ Carlybraces { } surround some blocks of code. The most important thing to
remember is that for every opening { brace there must be a closing

} brace somewhere later. Semi-colons to separate lines of code.

function stWﬁe\r/erﬁt){
play{};

kettle_mc._aipha = .5;

And one more rule about semi-colons:

* Where there is more than one line of code between your curly
braces, each line must be separated by a ; (see right) }

To help you see what is right or wrong about a block of ActionScript
code, notice that the code is coloured to identify different parts. It might also help to click
the Auto format button Mtbis makes your code nice and neat, which in turn makes it
easier for you to spot mistakes, and will also let you kaow if it finds any errors.

ActionScript good practice

1t is good practice to always keep your scripts on their own separate
layer and to keep this layer at the top of the Timeline stack {see right).
That way scripts are much easier to keep track of.

Controlling the main Timeline

Stopping the Timeline

The maost basic ActionScript you will ever need (and you will need it often) is the stop
action. In its simplest form it will stop the playback of the Timeline that it is placed on. .
There is an action applied to this frame

5

1 Make a simple animation in a new file,

. . , . L
2 Make a new layer on the main Timeline and name it

‘actions’ (see right).

3 Select the first keyframe of the actions layer and open
the Actions window.

{Adonsaipt 3.8 - 0 B
W gdiValue (Furiction L)
@& govalye (Tween) |
@ getvalve (Keytmm: |
@ getvalue (Motion) §
@ getvalve (SimpleE:
@ gewideoplayer (U L J
@ geiYFork (Bezierse £

4 In the main part of the window, type;
stop(};

5 You will see a small “a’ appear in the keyframe (see right),
indicating that an action is applied to that frame.

¢ Preview your movie; you'll see that the animation does not play.

This is a really useful action to add to the Timelines of Movie clip symbols; where you don’t
want them to loop forever (eg the animated button state on page 37).

Playing the Timeline with a button

The main purpose of Button symbols is to trigger actions, and the main purpose of those
actions is to stop or start a Timeline somewhere, To make a script which runs when a
button is clicked, first you have to identify which button will be pressed.

1 Keep adding to the movie you made in the previous example.

2 Place a button (any button} on the Stage in a new layer,

46 | Inrsosucrion 7o Fuask (53

Copyright © 2007 Natcoll Publishing

Starting the main Timeline again

To start a Timeline that has been stopped:

1

Select the button on the Stageand in the Properties window, give the button
an instance name (see right). Always start instance names with a lowercase

letter and don't use special characters other than _ (underscore). Be

descriptive but briefl Don’t forget that ActionScript is case sensitive, so you

will need to take note of where you have used lowercase and uppercase.

The script that you create will have two sections:
+ A listener that waits for something to happen, which triggers:
» A function that tells Flash what to do

[& Propertes < | FHters: |- Paraenaters:

M | Burton- - @ Initance o
g St bin 1 {swap., |

W il456 X

i BdD 7 v 73]

Instance name

Select the first keyframe of the actions layer again (the same place where you @ _btnand_me

placed the stop action) and open the Actions window. You will see the stop

action still there.

Create the listener: Make a new line underneath stop() ; and type the
following line of code:

start_btn.addEventlListener (MouseEvent .CLICK, startClick);

The first part—start_btn—

If you end your instance
names with _btn (for a
button) or _mc (fora
Movie clip}, Flash will
give you code hints in
the Actions window.

must match the instance name
you assigned to the button | [| 1

start_btn.addEventlListener(MouseEvent . CLICK, startClick};

. I [
previously. The last part— This mustmatchthe This is ActionScript
startClick—isa made up

name of yourbutton code which waits for

This is ActionScript This isthe {made up} name
code which detects of the function that will be

name, as 10ng as it matches up instance fromstep 3. something to happen. amouse dick. triggered in the next section,
3

with the name of the function in

the next step, the code will work. Just make sure This is the function name; ActionScript gets event

whatever name you use makes sense to you! Thistells Flash thatyou it must match up with the — inthis case a mouse

Create the function: Make another new line are starting a function, function name in the listener. CLICK— from the listener.

and add the following lines of code: I P
function startClick(event)

play(); }

play():

|
function startClick(event} {

H This is ActionSeript code which makes the current Timeline

Now test the movie. Your movie should be

play — it’s just the opposite of the stop action.

stopped when it first loads and should play
when you press the button.

Add another button instance to your buttons layer. So that you

know which button is which, it’s a good idea to label them—add
a new layer with button text on it (see right).

Select the new button and give it an instance name
{Properties window).

Select the first keyframe of the actions layer (you are putting all
the actions in the same place!) and open the Actions window.

Add another listener to wait for the button to be clicked which
triggers another function to stop

the timeline. It will be almost

N) . stop () ; — Stops the Timeline first of all.
identical to the previous listener-

Listens for start_btn to be clicked,
triggers startClick function.
i

function pair, but you will need to [
make sure that the instance names
match up, that the function has

a new name (different from the play();
previous function) and that you)
have set the function to stop () ;

|
start_btn.addEventListener{MouseEvent .CLICK, startCiick);

function startClick(event) {} Plays the timeline.

Listens for start_bin to be clcked,
triggers startClick function,
|

rather than play () ; (see right). |
Test the movie now. You should be
able to stop and start the Timeline
at will,

function stopClick{event) {
stop():

stop_btn.addEventiistener (MouseEvent CLICK, stopClick};

:l* Stops the timeline.

Copyright © 2007 Natcolt Peblishing

Chapter 4: ActionSeripting | 47

ontfolling a different Timeline
In the example above, you did not tell Flash which Timeline to stop or play. Flash assumed

you meant the Timeline that the script is sitting on. To stop a different Timeline, a path to
the Timeline is written using dot syntax.

Dot syntax is a type of addressin g system for Timelines-within- Timelines. We might write:
movieA mc.movi eB_mc.stop();

This suggests that there is a Movie clip
instance called ‘movieA_mc’, and inside it
is a Movie clip instance called ‘movieB_mc’
that we are stopping.

A real-life version of this might be;
myHouse.kitchen.cupboardUnderSink.ﬂySpray.play();
Which wil) play (spray!) the fiy spray inside the cupboard under the sink inside the kitchen inside
my hause,

All of the Movie Clip instances which are involved in this kind of script need to have
instance names so that ActionScript can take to them,

Try this now:

1 Create 2 new file and in it, make a new Moyie clip symbol.

2 Inside that Movie clip symbol, create an animation of some sort.

3 Place that Movie clip symbol on the Stage twice (see tight). When
you test this movie, both animations will play,

4 On the main Stage, give each instance of the Movie Clip symbol its
own instance name,

5 Creale a new ‘actions’ layer and open the Actions window,

6 Instead of adding a simple s top () ; action (which stops the Timeline it is sitting N T
on), add the followjng script: . @ Reserved names

menul_mc.stop(): Whepyguz;re .
. L - , . . N . sta
which stops the Timeline of the Movie clip symbol with the nstance name ‘menu]’ £aming instances an

.] ” functions, beware of
Of course you must make sure that your instance name matches up with the script! any name that turns

blue in the Actions
window-— this
indicates a word that
is already part of
ActionSeript, so you
should change your
name. For instance
myName is fine,
name is not,

7 When you test this movie, you will see that only one of the instances has stopped,

8 To make both of the instances stop, add another line so that your script reads;
menul_mc.stop():
menu2_me. stop();

9 So with that knowledge, it should be straightforward to add a button to the Stage
which will make only one instance of the Movie clip play:
menul__btn.addEventListener(MouseEvent.CLICK. startMenul);
function startMenal(event){
menul_mc.play():

} //take both menus stop initially
menul mc.stop():
. menu2_mc.sto 3
Commenting code M- stop()

f/Uistener-function to play menul

From this point onwards, your menul_btn.addEventi i stener (MouseEvent CLICK, startMenul);

ActionScripts will get more and

more complex, Commenting is a
feature common to all programming
languages and allows you to add notes
to yourself into the code so that when
you look at it again in several weeks’
time, you can easily see what you
meant to do,

function startMenul(event){
menul_mc.play();

filistener-function to play menul
menuz_btn.addEvantListener(MouseEvent.CLICK, startMenu?);

function StartMenuz (event) {
menu2_me.play();

To add comments to your code,

simply add // 1o the start of a line A5 ou typecode,Hash willpop-upaf

of text (see above)}. The comment will g0 a3 B %’ e Frepiie B | ofrelated code H you have used*_mg’
grey and Plash will ignore it. You can write 50 @ e 5 and"_btn'as instance names, You can

either: press Return/Enter to insert the
. highlighted code, double-dick another
& bunsrode I Option in the list, of just ignore it angd
continue typing,

—_—
48 | Iumosuchen To Fuasy €53 Copyright © 2007 Natcefl Publishing

whatever you like as comments and you can
write as many comments as you like if it
helps you to understand the ActionScript!

