

�

This final section of the notes presents outlines of some programming projects you may like to explore by yourself. The outlines are just that - outlines. You will have to design the Form for yourself, determine how the program will operate, and decide on the operation of the program code. You will also need to write that code for yourself.

You should adopt the approach taken throughout these notes in designing your own programs:

State the problem to be solved by your program.

Design the Application

What will your the user interface look like?

What controls will be used?

What menus will there be?

How the program will operate?

What will your user do, and what will happen when she does?

Which event procedures need code?

Do you need any general procedures?

Do you need any control arrays?

What will the program code have to do, and how will it do it?

What variables do you need?

Do you need arrays?

What needs to be declared at the start of the program?

Produce the Application

Create the Form and place the controls.

Name the controls and set their properties.

Set any control arrays.

Write the code into the appropriate procedures.

Debug the code; get it working.

Evaluate the application

Test your program:

Does it do what you want it to do?

How does it respond to expected inputs?

How does it respond to unexpected input?

How does it cope with ridiculous input?

Evaluate the program.

Can it be improved in any way?

What features do not work well?

What are the good features of the program?

Project 9:		“Madame Sosostris”

Madame Sosostris is a fortune-teller, and not a very good one at that. She often chooses her predictions from a collection of general purpose comments that she has built up over the years. She has decided to embrace computer technology, and wants a program which will generate these random comments for her.

Create a suitably “magical” form, and write a program which chooses a “prediction” at random from a set of general purpose predictions (such as “You will meet a handsome stranger.” or “Now is the time to be careful with money”). The astrology pages in magazines such as “Women’s Day” are a good source of this type of comment.

Programming hints:	

	The Form Load procedure should set up an array of messages (that is, Message(1) = “Beware of strangers” Message(2) = “You lucky number is 7” and so on).

	The program then generates a random number, and displays the message with that number.

	Your program will be more “realistic” if you have different messages for different circumstances. You might group them in groups of, say, five messages for each circumstance (or each star sign), and pick a message at random from this particular range of numbers.

Project 10:	“Amarillo Slim”

Amarillo Slim is a gambler - a poker player, to be precise. He has decided to put his name on a computer poker-playing program, and cash in on the craze for computer games.

Create a program which will “shuffle” a standard pack of 52 playing cards. That is, have the program produce a random arrangement of the numbers from 1 to 52 (this is called a “permutation” of the numbers). If you assign a number to each card in the pack, you can print out the shuffled pack, or you can “deal” poker hands of five cards each to a number of players.

Programming Hints:	

	This program can be written by modifying the algorithm used in the “Tattslotto” project. Instead of choosing 6 numbers at random from 45, you want to choose 52 numbers at random from 52.

	Placing the output in a Picture box rather than a Text box, using the Print command, lets you get multiple lines of text easily.

�

Project 11:	“The Great Barrier Reef”

Tanks of tropical fish are very relaxing to watch. They have a calming, soothing effect which is very useful in a stressful environment.

Design a program which has a number of fish images “swimming” at random on a suitably reef-like screen.

Programming Hints:

	You can draw the “fish” using a package such as the “Paintbrush” program supplied with Windows. If you do use Paintbrush, use Image Attributes ... from the Options menu to create a very small image. This saves memory when you run the program.

	Alternatively, you can use icons for the fish. In the C:\vb\samples\iconwrks subdirectory, there is a Visual Basic project file named iconwrks.mak Load this file into Visual Basic and run it. What you get is a program for creating your own icons, which can be saved for use in your program.

	You can set the fish swimming indefinitely by having them “wrap” around the screen. That is, when the fish reaches one edge of the form, have the program reset its left property to the other side. The fish seems to move off one side of the screen, and then reappear on the other side.

	The entire fish tank can be made more realistic by setting the WindowState property of the form to 2 - Maximized. When the program is run, the form window is automatically maximised for you. If you do this, you will have to do some careful calculations for the values of the left and top properties of your fish. You will also need to provide some method of stopping the program from running - a Quit button somewhere on the screen, for instance.

Project 12:	“TechnoBabble”

Ever since computers were invented, there has been a debate about whether a machine can think. One measure of “thinking” is the ability to hold a conversation. While you cannot hope to simulate that using Visual Basic on the computers you have available to you, you can carry out some investigations into the computer’s ability to simulate real language.

Create a program which generates random letters of the alphabet. Have the program put several of these together to make random words. Check to see how many of them actually are real English words. You can alter the probabilities of certain letters to see if this has any effect on the creation of real words.

Programming Hints:

	You can generate letters of the alphabet using the chr$ function. This function returns the character whose ASCII code corresponds to the number given in the function. The letters of the alphabet have ASCII codes from 65 (=A) to 90 (=Z). he lower case letters have codes from 97 (=a) to 122(=z). Hence, chr$(72) gives H, while chr$(116) gives t. Using the random number generator to generate integers between 65 and 90, for instance, can then give the letters you require.

	You can alter the probabilities of the letters by adopting a completely different approach. Use the Rnd function by itself, which will generate decimal fractions between 0 and 1. Rounding these off to, say, three decimal places will give you 1000 values to work with. For example, assigning values less than 0.100 to A, and values between 0.100 and 0.110 to B will make A 10 times more probable than B. Of course, you will need 26 IF statements.

Project 13:	“Confetti”

You may have seen “screen saver” programs which display a moving pattern of dots on the computer’s screen if a key hasn’t been pressed for some time.

Design a program which places dots of colour at random points on the screen, and continues to do so until the program is stopped. If you can get the dots to follow some path - a spiral, say, all the better.

Programming Hints:

	If you set the WindowState property of the form to 2 - Maximized, the form will occupy the entire screen. You will need to be careful in this case with the values that you use for the positions of the dots.

	To set the dots, you will need to use the Pset method. This method requires you to supply a pair of co-ordinates for the position of the dot, and can also take an optional value for the colour of that dot. The colour can be supplied by the RGB function which you have used earlier.

	For example, 	Form1.Pset (x,y), RGB(255,0,0) will draw a red dot at the position given by x and y on the form named Form1.

Project 14:	“The Drunkard’s Walk”

People under the influence of alcohol lose control over many physical functions, and frequently get the “staggers”. Random motion looks silly in a person affected by drink, but is of considerable importance in Physics and Chemistry, in the study of the motion of particles in gases and liquids.

Design a program which creates a “random walk”. That is, some point is chosen at random as a starting point, another random point is chosen close to the original point, and a line drawn to it. A random point is then chosen close to the last point, a line drawn to it, and the process repeated indefinitely.

Programming Hints:

	You will need to use the Line method. This method draws a line on the form between two points whose co-ordinates are given in the method.

	For example, Line (100,200) - (300,700) draws a line from the point with co-ordinates (100,200) to the point with co-ordinates (300,700). Note the hyphen between the two sets of co-ordinates.

�

Distributing Your Software

You have been using the Visual Basic software itself to run the programs which you have created using Visual Basic. But what do you do if you want to give a copy of your program to someone who doesn’t have Visual Basic themselves? Fortunately, Visual Basic provides the facility for you to make what is known as an “executable” file. Such files have the .EXE filename extension, and can be run directly from the Windows File Manager. They do not need the Visual Basic software to run them.

To make an executable file, choose Make EXE File from the Visual Basic File menu. You are presented with a dialog box:

�

Choose the directory into which the EXE file will be placed, and type a name for the file in the File Name: box. In the Application Title: box, you can enter the title which will appear below your program if it is installed into a Windows program group window.

There is one other thing needed for your program to run successfully. Many of the functions which a Visual Basic application uses are contained in what are called “Dynamic Link Libraries”, or DLLs. Your application will need to have access to the file named vbrun300.dll. You can copy this file from the C:\windows\system subdirectory on the computer which has the copy of Visual Basic used to create your program, and you can, quite legitimately, give this away with your application.

�

page � PAGE �92�	Programming In Visual Basic

	On Your Own	page � PAGE �91�

Chapter

11

On Your Own

