�





�





















You have reached the stage now (if you have done all of the work in the preceding 11 chapters, that is) where you have gained a thorough grounding in the elementary techniques of programming in Visual Basic.  You should be able to create a Form, add a variety of different controls to that form and set the properties of those objects, and create menus.  You can also attach Visual Basic program code to different events, declare general variables and procedures, and use the conditional and looping structures provided by Visual Basic.



There are still controls on the Toolbox which you have not used, and, for the controls which you have used, there are still many properties with which you are unfamiliar.  You have not yet created an application which uses more than one Form; nor have you created one which loads and saves data files.



This chapter and the ones which follow present Projects which introduce many of these more advanced Visual Basic concepts.  In each chapter, an initial Project is presented, and any new concepts explained.  Difficult or new code is given in detail, but you will be expected to provide the code for straightforward procedures for yourself.  An essential part of the Project comes in the suggested extensions to the Project.  These will only be described - you will be expected to develop the code for yourself, and perhaps learn about new controls, properties, or Visual Basic statements from the Help section of the software rather than from these notes.  These extensions, therefore, are the place where most of your learning will occur, and should be the area to which most of your concentration and effort is directed.



In all of the Projects, the “Investigate, Design, Produce, Evaluate” model is the basis for the presentation of the project.  It should also be the basis of your approach to the projects and their extensions.  You should write down for yourself the Investigation and Design phases, and do your own written Evaluation.  These not only help you while you are completing the Project, they also provide comprehensive ‘documentation’ for your program, so that other people can follow what you have done.  



You will also be introduced to the notion of ‘internal documentation’ for the program code itself.  In addition to explaining what the program does, it helps make long complicated procedures easier to read.





The Projects are a little more useful than the ones you have created so far.  They include simple (and not-so-simple) games, a simple database, and a simple drawing program.







�	1.	Investigation





Young children love playing games on the computer, and particularly like guessing games.  This Project is the simple “Think-Of-A-Number” game - the computer generates a random number, and the user has to enter guesses for the number.  The program tells the user whether a particular guess is too high, too low, or spot on.  





	Problem Statement:	To create a “Number Guessing Game”, in which the player tries to guess a number generated by the computer.  The program should check each guess, and provide feedback to the player on whether the guess is higher than, lower than or equal to the secret number.  





Since the game is to be played by young children, it should provide on-screen instructions, and have an attractive and easy-to-use interface.









	2.	Design



The User Interface



The Form requires:



a set of instructions

a box for the player to enter her guess

a box to display feedback 

a button to click to have the guess checked

a button to click to have the number revealed

a button to click to start a new game

a Quit button



A suitable Form might look like:



�	Labels				Text Box				Command Buttons

�������

�



Using a Label control for the feedback, rather than a Text Box, is a good idea in this application, because the text which appears in a Label (set by its caption property) cannot be altered by the user.  It can, however, be reset by your program code.





Program Operation





You should be able to describe most of the program’s operation for yourself, and you should do that now, before reading the descriptions which follow.





The program requires an initialisation procedure, to be used at the start of the program, and also by the Restart button.  The only other events to which the program must respond are the Click events for the four buttons:  





	Event:	The program starts.



	Actions:	1.	Variables are created to store the secret number, the most recent guess, and the number of guesses.



		2.	The secret number is generated, and stored in the secret number variable.



		3.	The text box is emptied.





	Event:	The user clicks the Check button



	Actions:	1.	See if the player has entered a number in the text box.



		2.	If there is a number, check to see if it is too large, too small, or correct, and display a suitable message.



		3.	If there is not a number in the text box, display an error message.





	Event:	The user clicks the Give Up button



	Actions:	1.	Display the secret number, in a suitable message.



		2.	Hide the Check and Give Up buttons.





	Event:	The user clicks the Restart button



	Actions:	1.	Make the Check and Give Up buttons visible.



		2.	Run the initialisation procedure.





	Event:	The user clicks the Quit button



	Action:	1.	The program finishes.





�	3.	Production





Creating The Form And Its Controls





This application only contains objects that you have used before, so creating the interface should be quite straightforward.  Make sure that you name all of the objects.







Entering The Program Code



Most of the code for this application should be familiar to you.  In the listings which follow, make note of the use of comments.  You indicate a comment when you are entering your code by typing a single quote mark ( ‘ ) at the beginning of the comment.  Visual Basic ignores whatever follows this mark when the program is being run, so you can enter all sorts of descriptions and explanations into your code.  This is part of the “internal documentation” of the program, and is essential if you want other people to be able to read your program code easily.



The other aspect of the code for this application is its ‘modularity’ - various operations are placed in their own general procedures, and called when needed.  There is a procedure to check the latest guess, and this procedure in turn uses three other procedures to display the messages.  The Check_Click() procedure, which could have contained all of this code, is quite short and easy to read, instead of being very long and complicated.  It is good programming practice to break the tasks down like this into smaller units.  Not only do you get more readable program code, you also get a collection of little procedures that can be used again in other procedures if you modify the program later.





�' Constants for this Form

Const topvalue = 1000	' i.e. numbers from 1 to 1000.

				' Change this value to alter

				' the range of possible numbers



' Variables available anywhere in this Form:

Dim secretnum, guessednum, numguesses As Integer



Sub initialise ()

    Randomize

    secretnum = Int(Rnd * topvalue) + 1

    numguesses = 0

    prompt.Caption = "Type your number into the box and then click the 'Check' button"

    user.Text = ""

End Sub



Sub checknumber ()

    numguesses = numguesses + 1

    guessednum = Val(user.Text)

    If guessednum = secretnum Then

        congratsmessage

    Else

        If guessednum > secretnum Then

            toobigmessage

        Else

            toosmallmessage

        End If

    End If

End Sub



Sub congratsmessage ()

    message = "Congratulations!  You got the secret number"

    message = message + " in " + Str(numguesses) + " tries."

    prompt.Caption = message

    check.Visible = False

    giveup.Visible = False

End Sub



Sub toobigmessage ()

    prompt.Caption = "No, " + user.Text + " is too big."

End Sub



Sub toosmallmessage ()

    prompt.Caption = "Sorry, " + user.Text + " is too small"

End Sub



Sub check_click ()

    If user.Text <> "" Then

        checknumber

        user.Text = ""

        user.SetFocus

    Else

        prompt.Caption = "You need to enter a number."

        user.SetFocus

    End If

End Sub



Sub giveup_click ()

    prompt.Caption = "The secret number is " + secretnum

    check.Visible = False

    giveup.Visible = False

End Sub



Sub restart_Click ()

    check.Visible = True

    giveup.Visible = True

    initialise

    user.SetFocus

End Sub





You can provide the code for the Quit_Click() procedure yourself.







	4.	Evaluation





Testing The Program





1.	Play the game yourself several times.  Make sure that the appropriate messages appear at the correct times.





2.	What was the smallest number of guesses you took to find the correct number?



	What was the largest number of guesses?



3.	There is a strategy for finding the secret number in a situation such as this.  The strategy is one which you can follow every time, and which will guarantee that you find the secret number within a certain number of guesses.  The strategy sets a maximum number of guesses required for a secret number within a given range.



	Do you know what the strategy is?  If so, write it out in words (that is, write out the algorithm for the optimum strategy).  If not, play the game several more times, and try to discover the strategy.





4.	Change the value of the TopValue constant; try 5000, or 10,000 for a start.  



	Can you find the upper limit for the number of guesses needed in these cases?







Improving The Program





1.	Add a box to display the number of guesses as the game is played.





2.	Have the game allow the user to set the range of values.  You will need some instructions, and a box for the player to enter the chosen maximum (or you could use a scroll bar)









�Extension Project:	“Computer Guess-A-Number”





The theme of this extension is to get the computer to play the guessing game.  To do so, it will need to have some strategy programmed into its code somewhere; a strategy that will guarantee that it will eventually guess the number.  There is not much point in having the program just make a random guess each time - it will not seem particularly ‘intelligent’ if that is all it does.  The information provided in the previous game about whether a guess was too big or too small was very useful in making the next guess.  The computer should surely be able to do the same.







	Problem Statement:	Reverse the roles in the previous Project.  That is, have the player select the secret number, and have the computer try to guess what it is.  The player will provide feedback on whether the computer’s guess is too high, too low, or correct.





The Form might look something like this:





�







This application will need some process for the computer to use to make its guesses.  It will need to store its latest guess, the current highest possible value for the secret number and the current lowest possible value for the secret number.  (These will change as the player informs the program of whether a guess is too high or too low).  The guessing process itself will need to incorporate the algorithm for the optimum strategy for this sort of game.  



Make sure that your program has some method of detecting whether the player is being honest in her answers, and have suitable messages displayed if the player provides incorrect information.  Also have the program keep track of the number of guesses, and provide some sort of comment on its own performance.







This Project begins to implement some of the ideas of Artificial Intelligence - the attempt to have computers behave more like human beings.  



How “intelligent” do you think this program is?

�



page � PAGE �100�	Programming In Visual Basic



	The “Guess A Number” Game	page � PAGE �99�





Chapter

12



The “Guess A Number” Game



Declaring a constant like this means that you can alter the value of the largest possible number just by altering the value of this variable.








