�

�

The programs developed in the previous Projects have done several simple data processing tasks. They have taken you through the use of most of the basic components of a Windows screen interface, and through some elementary programming techniques. What you need to do now is learn about some more advanced programming concepts.

This Project deals with the use of arrays in programming. An array is a set of objects which all have the same name, but are distinguished from each other by a number. The objects can be variables or controls. The number used to refer to them is called the index or subscript. This subscript can itself be a variable, so that you can write code for a process, and use it with any of the objects in an array.

Another programming concept used in this Project is that of a loop. A programming loop is a way of getting a piece of code to be executed several times. Loops allow you to write programs which do many things, but which only require small amounts of code. In combination with an array, you can use loops to carry out the same processing task on a large number of objects, without having to write large amounts of code. One particularly interesting use of loops is in programming animations. Placing the code to change the position of an object inside a loop allows you to repeat the movement many times, without writing any extra code, and thus have the object move across the screen.

The third new concept is that of a random number. The computer can generate numbers whose values are (essentially) random in their behaviour - neither you, the programmer, nor your users can predict what will happen when a program runs. You can include random numbers in your program so that the program behaves differently each time it runs.

Together, these three concepts allow you to write simulation program - applications in which some aspect of the real world is imitated by your program. Simulations represent an important use of computers in the modern world. Producing realistic animation (which is just a simulation of the behaviour of a real object) also makes extensive use of random numbers.

�	1.	Investigation

Producing an application which imitates some aspect of the real world is great fun, as well as leading into some of the important applications of computing. This Project is going to simulate a horse race - that is, it is going to set some objects moving at random across the screen. The objects which represent the ‘horses’ will just be graphic images (there is a cute mouse graphic available in the Visual Basic software which makes for a fun program). The ‘horses’ will move one at a time - the actual one which moves at a particular time will be chosen at random by the program. Similarly, the distance which that ‘horse’ moves will also be random. You will be aiming to make the ‘race’ as realistic as possible.

	Problem Statement:	To simulate, as realistically as possible, a horse race. The Project must make use of randomness to make the ‘race’ unpredictable.

The aim is not to make this application look as much like a horse race as possible, but to behave like one. The actual appearance of the ‘horses’ is not important; neither is the appearance of the ‘track’ on which they race. What is required is realistic movement of the ‘horses’, and uncertainty in the result of the race.

	2.	Design

The User Interface

The Form will be a simple rectangle containing five objects to represent the ‘horses’. There will be some sort of ‘finish line’, and a button to start the ‘race’:

�			Image Controls			Line Control
�����

� �

		Command Button
The five Image controls must be in a control array. The little mouse images they contain are icons from the Visual Basic software.

Program Operation

The code which does all of the work in this application is all attached to the Start button. It involves the use of the random number generator in Visual Basic, and of a loop structure to repeat the commands which move a ‘horse’.

	Event:	The user clicks the Start button

	Actions:	1.	The program generates a random ‘distance’ to move the ‘horse’.

		2.	A ‘horse’ is chosen at random.

		3.	The chosen horse is moved through the generated distance.

		4.	The program checks to see if the ‘horse’ which has just moved is over the ‘finish line’. If it is, the program stops. If it is not, the process is repeated.

	3.	Production

Creating The Form And Its Controls

1.	Start a new Project. Resize the Form, and set its BackColor property to a nice grassy green. Set its Caption property to something suitable.

2.	Use the Image control icon from the Toolbox to draw a small Image control in the top right-hand corner of the Form.

	Set the Name property of this control to horse.

3.	Draw another Image control just below the first, and set its name property to horse also. When you press Enter, a dialog box appears:

�

	Click the Yes button , because you do want to create an array of controls all named horse.

	Note the appearance of the Properties window:

�

	Your Image control is now named horse(1). It is not, however, the first control in the array. The first Image control you created is now named horse(0). Whenever arrays are created, Visual Basic begins the numbering at 0 not at 1.

4.	Draw three more Image controls. Name them all horse as well. You should now have an array of five Image controls, named horse(0) to horse(4). You can verify that this has occurred from the Properties window:

�

5.	Now use the Line control icon to draw a ‘Finish Line’ vertically down the Form, towards the right-hand side.

	Set its BorderWidth property to 3, and its BorderColor property to a nice deep red.

	Select this Line control, and look at the top right-hand end of the Toolbar. The diagrams there show the Top, Left, Width and Height properties for that control:

�����

			Left		Top		Width		Height

	Make a note of the value of the Left property - you will need it later in your program.

6.	Now to place a picture into the Image controls. Select one of the Image controls, and select its Picture property in the Properties window.

	Click on the ‘ellipsis’ button’ at the end of the entry line:

�									ellipsis

�

	(The ‘ellipsis’ is actually the set of three dots.)

	A Load Picture dialog box appears.

	Select the C: drive, the vb directory, then the icons subdirectory, then the computer subdirectory within that. Now select the mouse04.ico file.

	(You have actually loaded the file named C:\vb\icons\computer\mouse04.ico)

7.	Place the Command Button on the Form, and set a suitable caption.

	Your Form should now look like the one shown on page 70.

Entering The Program Code

This program does not require any general declaration of variables, nor are there any general procedures. What is required, however, is some understanding of the random number generator in Visual Basic. Random numbers are generated using the Rnd function. This function produces a random number greater than or equal to 0, and less than 1. More precisely,

				0 (Rnd (0.999999...

To obtain numbers from a larger range, you need to multiply this number by something. To get number between 0 and 5, for instance, you need to multiply the number produced by Rnd by 5. You get:

				0 (5 * Rnd (4.999999...

To make this number into a whole number, you use the Int function, which removes any fractional part. You get:

				0 (Int(5 * Rnd) (4...

where the number produced is one of the integers 0, 1, 2, 3, or 4.

Enter this procedure into the Click event procedure for the Start button:

	Sub StartButton_Click()
		Randomize
		Do
			pick = Int(5 * Rnd)
			dist = Int(100*Rnd + 50)
			horse(pick).Left = horse(pick).Left + dist
		Loop Until horse(pick).Left + horse(pick).Width > Line1.Left
	End Sub

This seems like a very simple program (which it is), and it illustrates the economy which can be gained from the use of loops.

Explanation of the program:

	Randomize	Resets the random number generator. Without this command, the program would produce the same sequence of random numbers each time it was run.

	Do	Marks the start of the loop. The statements following this line are the ones to be repeated.

	pick = Int(5 * Rnd) 	Generates a random integer in the range 0 to 4 inclusive. This number is going to be the index number of the horse to be moved.

	dist = Int(100*Rnd + 50) 	This generates a random integer between 50 and 149 (can you explain how?). This number will be the distance which the horse moves.

	horse(pick).Left = horse(pick).Left + dist 	Changes the Left property of the element of the Image array whose index number is the number pick. It changes this Left property by the amount of the number dist.

	Loop Until horse(pick).Left + horse(pick).Width > Line1.Left
		Thus line marks the end of the loop that began with the word Do. All of the statements from Do down to here will be repeated until the value of the Left property of the most recently-moved ‘horse’, plus its Width property, is greater than the Left property of the ‘finish line’.

It is worth you spending some time with this procedure, to make sure that you understand how it does what it does. As mentioned at the start of this chapter, the use of arrays, loops and random numbers are all very important techniques. Most of your future programming will involve one or the other of these techniques. You should not move past this, your first encounter with these concepts, if you don’t understand how they operate.

Make sure that you add to your program some way of finishing the program (a Quit button, or an Exit option on a File menu, for instance).

	4.	Evaluation

Testing The Program

1.	Run the program several times, noting which of the ‘horses’ wins each time. Is the winner always a different ‘horse’?

2.	Remove the Randomize statement from your code. Again, run the program several times, noting which ‘horse’ is the winner. Is the winner always a different ‘horse’?

3.	The values for the distance which the ‘horses’ move each time are always between 50 and 150. Experiment with the program, changing the code which generates this distance to see the effect of moving the ‘horses’ different distances. Try moving the ‘horses’ a distance between 0 and 50 units; between 100 and 200 units; between 0 and 100 units.

	Which values give the most ‘realistic’ races? Which give the least realistic?

Evaluating The Program

How realistic do you think this simulation is? (Remember, the aim was to simulate the behaviour of the ‘horses’, not their appearance.)

What aspects of the program are realistic?

What aspects are not particularly realistic?

Improving The Program

1.	Create a text box to display an announcement about which ‘horse’ has won the race.

�

	Have this box invisible at the start of the program (set its Visible property to False in the Form_Load procedure), and made visible when one of the ‘horses’ has crossed the ‘finish line’.

2.	Provide the user with the option of running another ‘race’. Place a Restart and a Quit button on the Form, and have them invisible at the start of the ‘race’. Have these buttons become visible when the ‘race’ is over, and the Start button become invisible. The Restart button should place all of the ‘horses’ back at the ‘start’ (by resetting their Left property). When the ‘horses’ are in place, have the Restart button become invisible, and the Start button made visible again.
�

page � PAGE �80�	Programming In Visual Basic

	Fourth Programming Project - “The Melbourne Cup”	page � PAGE �79�

Chapter
9

Fourth Programming Project
“The Melbourne Cup”

