Here is the code from the PD session. Creating a simple maze in Director.

This is the code that goes on the maze dot sprite. It is a behaviour that is attached to the sprite I called MazeDot in the timeline. So you will have the circle object on the stage and call the member name MazeDot and then you will drag this script behaviour, also called MazeDot, onto the circle on the stage. Make sure this is a behaviour script.

MazeDot

property pSprite, pRectList, pMoveIncr, pRIGHTkey

property pLEFTkey, pUPkey, pDOWNkey, pHDir, pVDir

global gMazeDot

-- should be applied to sprite moving through maze

--NOTE: this sprite must be in a higher numbered

-- sprite channel than the maze walls

on getPropertyDescriptionList me
 set pdlist to [:]

 addprop pdlist, #pMoveIncr,[#comment:"Move increment(pixels):",#format:#integer, #default:"8"]

 addprop pdlist, #pRIGHTkey, [#comment:"Right Key:",#format:#string, #default:"L"]

 addprop pdlist, #pLEFTkey, [#comment:"Left Key:", #format:#string, #default:"J"]

 addprop pdlist, #pUPkey, [#comment:"Up Key:",#format:#string, #default:"I"]

 addprop pdlist, #pDOWNkey, [#comment:"Down Key:",#format: #string, #default:"K"]

 return pdlist

end getPropertyDescriptionList
on beginSprite me
 gMazeDot = me.spriteNum
 pRectList = []

 sendAllSprites(#reportRect, pRectList)

 pSprite = sprite(me.spriteNum)

 pHDir = 0
 pVDir = 0
end beginSprite
on getKey me
 pHDir = 0
 pVDir = 0
 case the key of
 pRIGHTkey: pHDir = 1
 pLEFTkey: pHDir = -1
 pUPKey: pVDir =-1
 pDOWNkey: pVDir = 1
 end case
end
on prepareFrame me
 if pHDir <> 0 OR pVDir <> 0 then
 currentRect = pSprite.rect
 deltaH = pHDir * pMoveIncr

 deltaV = pVDir * pMoveIncr

 deltaRect = rect(deltaH, deltaV, deltaH, deltaV)

 newRect = currentRect + deltaRect

 repeat with mazeRect in pRectList

 if intersect(newRect, mazeRect) > 0 then
 pHDir = 0
 pVDir = 0
 exit
 end if
 end repeat
 pSprite.rect = newRect

 end if
end

Below is the code that goes on the frame script.

on exitFrame me

showTime
 go to the frame
end

Here is the code that is a movie script. You can call this anything you want but you must ensure that you click movie in the scripts preferences.

global gEndTime

on startMovie
 set the keyDownScript to "passKeyEvent"
end
on passKeyEvent

 global gMazeDot

 sendSprite gMazeDot, #getKey

end passKeyEvent

on beginSprite

 -- game ends 30 seconds from now

 gEndTime = the ticks + 30*60
 showTime

end
on showTime

 -- convert ticks to seconds remaining

 timeLeft = (gEndTime - the ticks + 30)/60
 -- use this text

 text = "Time:"&&timeLeft

 -- if text is different than text displayed

 if member("Time").text <> text then
 member("Time").text = text
 end if
 -- time up?

 if timeLeft <= 0 then
end if
end
on beginSprite
 set the keyDownScript to "passKeyEvent"
end
on passKeyEvent

 global gMazeDot

 sendSprite gMazeDot, #getKey

end passKeyEvent

on stopMovie
 end

This is the code that goes on the addrect behaviour script which is dragged onto every obstacle you want in the maze except for the circle.

addrect script
-- attach to maze wall sprites

on reportRect me, pRectList

 myRect = sprite(me.spriteNum). rect
 add pRectList, myRect

end
Now that you have all of the code the final thing you must make sure of is that the MazeDot circle is at the bottom of the score window. For example, just say you’ve made 15 walls and attached the addrect behaviour script. The circle will be in channel 16.

Finally, you need one new cast member called time. This is a text box which will record the amount of time it takes to complete the maze. In the text box, write time as well.

Some explanations on the code

The keyDownScript lets you designate a line of code (or a handler) to be executed when a key is pressed. This code gets called first when a key is pressed before the on KeyDown handler in the movie script.

Global variables are available to any handler and can persist as long as the application is running – they can be called and remembered at any time.

Local variables exits only for the handler that is running.

What you should have now are 1 frame script in the first frame of the movie.

2 behaviour scripts, one of which goes on the MazeDot circle on the stage and the other one addrect which goes on the walls of the maze. Finally, you should have one movie script.

PAGE
3

