[Informatics] Authentication Records for Informatics
Judy Zuccon
zucconja at aquinas.vic.edu.au
Fri Apr 15 11:50:13 AEST 2016
Hi Stephen,
Last two pages at:
http://www.vcaa.vic.edu.au/Documents/vce/computing/Informatics_SBA.pdf
Many thanks
Judy Zuccon
On 15 April 2016 at 11:24, Stephen Trouse <
Stephen.Trouse at flinders.vic.edu.au> wrote:
> Hi Everyone,
>
>
>
> I have the authentication record and assessment sheet for Software Dev but
> not for Informatics. Does anyone know where I can find those?
>
>
>
> Stephen
>
>
>
> *From:* informatics-bounces at edulists.com.au [mailto:
> informatics-bounces at edulists.com.au] *On Behalf Of *Mark
> *Sent:* Thursday, 14 April 2016 2:03 PM
> *To:* Year 12 VCE Informatics Teachers' Mailing List <
> informatics at edulists.com.au>
> *Subject:* [Informatics] Some problems with statistics [LONG]
>
>
>
> Hi all. For those of you looking for case studies of bad statistical use,
> I found an interesting read in this...
>
>
>
> 'STATISTICS DONE WRONG - THE WOEFULLY COMPLETE GUIDE' by Alex Reinhart
>
> no starch press - info at nostarch.com www.nostarch.com
>
> ISBN-10: 1-59327-620-6 ISBN-13: 978-1-59327-620-1
>
>
>
> Some rather long, but thought-provoking excerpts from the book may be
> useful for you and kids evaluating statistical data during hypothesis
> research.
>
>
>
> In brief: there are many problems to be found in published research data.
>
>
>
> ---------------
>
>
>
> The problem of rejecting valid conclusions because of unimportant errors...
>
>
>
> A conclusion supported by poor statistics can still be correct —
> statistical and logical errors do not make a conclusion wrong, but merely
> unsupported.
>
>
>
> The problem of only publishing exciting findings...
>
>
>
> We only ever see a fraction of medical research, for instance, because few
> scientists bother publishing “We Tried This Medicine and It Didn’t Seem to
> Work.” In addition, editors of prestigious journals must maintain their
> reputation for groundbreaking results, and peer reviewers are naturally
> prejudiced against negative results. When presented with papers with
> identical methods and writing, reviewers grade versions with negative
> results more harshly and detect more methodological errors.
>
>
>
> The pharmaceutical industry seems particularly tempted to bias evidence by
> neglecting to publish studies that show their drugs do not work;
> subsequent reviewers of the literature may be pleased to find that 12
> studies indicate a drug works, without knowing that 8 other unpublished
> studies suggest it does not. Of course, it’s likely that such results would
> not be published by peer-reviewed journals even if they were submitted—a
> strong bias against unexciting results means that studies saying “it didn’t
> work” never appear and other researchers never see them. Missing data and
> publication bias plague science, skewing our perceptions of important
> issues.
>
>
>
> The problem with small sample sizes...
>
>
>
> In the United States, counties with the lowest rates of kidney cancer tend
> to be Midwestern, Southern, and Western rural counties. Why might this be?
> Maybe rural people get more exercise or inhale less-polluted air. Or
> perhaps they just lead less stressful lives.
>
> On the other hand, counties with the highest rates of kidney cancer tend
> to be Midwestern, Southern, and Western rural counties.
>
> The problem, of course, is that rural counties have the smallest
> populations. A single kidney cancer patient in a county with 10 residents
> gives that county the highest kidney cancer rate in the nation. Small
> counties hence have much more variation in kidney cancer rates simply
> because they have so few residents.
>
>
>
> The problem with false positives that sound exciting...
>
>
>
> http://xkcd.com/882
>
>
>
> The problem with Correlation and Causation
>
>
>
> When you have used multiple regression to model some outcome—like the
> probability that a given person will suffer a heart attack, given that
> person's weight, cholesterol, and so on — it’s tempting to interpret each
> variable on its own. You might survey thousands of people, asking whether
> they’ve had a heart attack and then doing a thorough physical examination,
> and produce a model. Then you use this model to give health advice: lose
> some weight, you say, and make sure your cholesterol levels fall within
> this healthy range. Follow these instructions, and your heart attack risk
> will decrease by 30%!
>
> But that's not what your model says. The model says that people with
> cholesterol and weight within that range have a 30% lower risk of heart
> attack; it doesn’t say that if you put an overweight person on a diet and
> exercise routine, that person will be less likely to have a heart attack.
> You didn't collect data on that! You didn't intervene and change the weight
> and cholesterol levels of your volunteers to see what would happen.
>
> There could be a confounding variable here. Perhaps obesity and high
> cholesterol levels are merely symptoms of some other factor that also
> causes heart attacks; exercise and statin pills may fix them but perhaps
> not the heart attacks.
>
> The regression model says lower cholesterol means fewer heart attacks, but
> that's correlation, not causation.
>
> One example of this problem occurred in a 2010 trial testing whether
> omega-3 fatty acids, found in fish oil and commonly sold as a health
> supplement, can reduce the risk of heart attacks. The claim that omega-3
> fatty acids reduce heart attack risk was supported by several observational
> studies, along with some experimental data. Fatty acids have
> anti-inflammatory properties and can reduce the level of triglycerides in
> the bloodstream—two qualities known to correlate with reduced heart attack
> risk. So it was reasoned that omega-3 fatty acids should reduce heart
> attack risk.
>
> But the evidence was observational. Patients with low triglyceride levels
> had fewer heart problems, and fish oils reduce triglyceride levels, so it
> was spuriously concluded that fish oil should protect against heart
> problems. Only in 2013 was a large randomized controlled trial published,
> in which patients were given either fish oil or a placebo (olive oil) and
> monitored for five years. There was no evidence of a beneficial effect of
> fish oil.
>
> Another problem arises when you control for multiple confounding factors.
> It’s common to interpret the results by saying, “If weight increases by one
> pound, with all other variables held constant, then heart attack rates
> increase by...” Perhaps that is true, but it may not be possible to hold
> all other variables constant in practice. You can always quote the numbers
> from the regression equation, but in reality the act of gaining a pound of
> weight also involves other changes. Nobody ever gains a pound with all
> other variables held constant, so your regression equation doesn’t
> translate to reality.
>
>
>
> The problem of Simpson's Paradox
>
>
>
> When statisticians are asked for an interesting paradoxical result in
> statistics, they often turn to Simpson’s paradox. Simpson's paradox arises
> whenever an apparent trend in data, caused by a confounding variable, can
> be eliminated or reversed by splitting the data into natural groups. There
> are many examples of the paradox, so let me start with the most popular.
>
> In 1973, the University of California, Berkeley, received 12,763
> applications for graduate study. In that year’s admissions process, 44% of
> male applicants were accepted but only 35% of female applicants were. The
> university administration, fearing a gender discrimination lawsuit, asked
> several of its faculty to take a closer look at the data.
>
> Graduate admissions, unlike undergraduate admissions, are handled by each
> academic department independently. The initial investigation led to a
> paradoxical conclusion: of 101 separate graduate departments at Berkeley,
> only 4 departments showed a statistically significant bias against
> admitting women. At the same time, six departments showed a bias against
> men, which was more than enough to cancel out the deficit of women caused
> by the other four departments.
>
> How could Berkeley as a whole appear biased against women when individual
> departments were generally not? It turns out that men and women did not
> apply to all departments in equal proportion. For example, nearly
> two-thirds of the applicants to the English department were women, while
> only 2% of mechanical engineering applicants were. Furthermore, some
> graduate departments were more selective than others.
>
> These two factors accounted for the perceived bias. Women tended to apply
> to departments with many qualified applicants and little funding, while men
> applied to departments with fewer applicants and surpluses of research
> grants. The bias was not at Berkeley, where individual departments were
> generally fair, but further back in the educational process, where women
> were being shunted into fields of study with fewer graduate opportunities.
>
>
>
> The problem with making mistakes
>
>
>
> Surveys of statistically significant results reported in medical and
> psychological trials suggest that many p values are wrong and some
> statistically insignificant results are actually significant when computed
> correctly. Even the prestigious journal Nature isn’t perfect, with roughly
> 38% of papers making typos and calculation errors in their p values. Other
> reviews find examples of misclassified data, erroneous duplication of data,
> inclusion of the wrong dataset entirely, and other mix-ups, all concealed
> by papers that did not describe their analysis in enough detail for the
> errors to be easily noticed.
>
>
>
> The problem of data decay when seeking to verify the data used in previous
> research
>
>
>
> Another problem is the difficulty of keeping track of data as computers
> are replaced, technology goes obsolete, scientists move to new
> institutions, and students graduate and leave labs. If the dataset is no
> longer in use by its creators, they have no incentive to maintain a
> carefully organized personal archive of datasets, particularly when data
> has to be reconstructed from floppy disks and filing cabinets. One study of
> 516 articles published between 1991 and 2011 found that the probability of
> data being available decayed over time. For papers more than 20 years old,
> fewer than half of datasets were available.Some authors could not be
> contacted because their email addresses had changed; others replied that
> they probably have the data, but it’s on a floppy disk and they no longer
> have a floppy drive or that the data was on a stolen computer or otherwise
> lost.
>
>
>
>
>
> Regards, Mark
>
>
>
> with thanks to
>
>
>
> 'STATISTICS DONE WRONG - THE WOEFULLY COMPLETE GUIDE' by Alex Reinhart
>
>
>
> --
>
>
>
> Mark Kelly
>
>
>
> mark at vceit.com
>
> http://vceit.com
>
> _______________________________________________
> http://www.edulists.com.au - FAQ, resources, subscribe, unsubscribe
> VCE Informatics Mailing List kindly supported by
> http://www.vcaa.vic.edu.au/vce/studies/infotech/itapplications3-4.html -
> Victorian Curriculum and Assessment Authority <br>
> http://www.vitta.org.au - VITTA Victorian Information Technology
> Teachers Association Inc <br>
> http://www.swinburne.edu.au/ict/schools - Swinburne University
>
--
Judy Zuccon
RTO Coordinator
AQUINAS COLLEGE
Great Ryrie Street
P.O. Box 190, Ringwood VIC 3134
T: (03) 9259 3046
VM: (03) 9259 3199
E: zucconja at aquinas.vic.edu.au
CELEBRATING OUR YEAR OF STEWARDSHIP
This email and any attachments may be confidential. If you are not the
intended recipient, you must not disclose or use the information in this
email. If received in error, please notify the sender or Aquinas College
immediately and delete the email and all copies. Aquinas College does not
represent or warrant that the attached files are free from computer viruses
or other defects. Any attached files may only be used on the basis that the
user assumes all responsibility for any loss, damage or consequences
resulting directly or indirectly from the use of the attached files,
whether caused by the negligence of the sender or not. The liability of
Aquinas College is limited in any event to either the resupply of the
attached files or the cost of having the attached files resupplied. Any
representations or opinions presented in this email are solely those of the
individual sender and do not necessarily represent those of Aquinas
College. Emails and data sent and received by Aquinas email accounts may be
stored offsite.
-------------- next part --------------
An HTML attachment was scrubbed...
URL: http://www.edulists.com.au/pipermail/informatics/attachments/20160415/0fe87ee5/attachment-0001.html
More information about the informatics
mailing list